skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1941680

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Nanostructures made of metallic materials support collective oscillations of their conduction electrons, commonly known as surface plasmons. These modes, whose characteristics are determined by the material and morphology of the nanostructure, couple strongly to light and confine it into subwavelength volumes. Of particular interest are metallic nanostructures for which the size along one dimension approaches the nanometer or even the subnanometer scale, since such morphologies can lead to stronger light–matter interactions and higher degrees of confinement than regular three‐dimensional nanostructures. Here, the plasmonic response of metallic nanodisks of varying thicknesses and aspect ratios is investigated under far‐ and near‐field excitation conditions. It is found that, for far‐field excitation, the strength of the plasmonic response of the nanodisk increases with its thickness, as expected from the increase in the number of conduction electrons in the system. However, for near‐field excitation, the plasmonic response becomes stronger as the thickness of the nanodisk is reduced. This behavior is attributed to the higher efficiency with which a near‐field source couples to the plasmons supported by thinner nanodisks. The results of this work advance the understanding of the plasmonic response of thin metallic nanostructures, thus increasing their potential for the development of novel applications. 
    more » « less
  2. Abstract Polaritons—confined light–matter waves—in van der Waals (vdW) materials are a research frontier in light–matter interactions with demonstrated advances in nanophotonics. Reflection, as a fundamental phenomenon involving waves, is particularly important for vdW polaritons, predominantly because it enables the investigation of polariton standing waves using the scanning probe technique. While previous works demonstrate a rigid phase ≈π/4 for the polariton reflection, herein is reported the altering of the polariton reflection phase by varying the geometry of polaritonic microstructures for the case study of hyperbolic surface polaritons (HSPs) in hexagonal boron nitride (hBN). Specifically, it is demonstrated that the polariton reflection phase can be systematically altered by varying the corner angle of the hBN microstructures, and that it experiences a π jump around a specific angle. This behavior, which is a consequence of the mathematical nature of the reflection coefficient, is therefore expected in other physical phenomena. 
    more » « less