skip to main content

Search for: All records

Award ID contains: 1941695

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As new grid edge technologies emerge—such as rooftop solar panels, battery storage, and controllable water heaters—quantifying the uncertainties of building load forecasts is becoming more critical. The recent adoption of smart meter infrastructures provided new granular data streams, largely unavailable just ten years ago, that can be utilized to better forecast building-level demand. This paper uses Bayesian Structural Time Series for probabilistic load forecasting at the residential building level to capture uncertainties in forecasting. We use sub-hourly electrical submeter data from 120 residential apartments in Singapore that were part of a behavioral intervention study. The proposed model addresses several fundamental limitations through its flexibility to handle univariate and multivariate scenarios, perform feature selection, and include either static or dynamic effects, as well as its inherent applicability for measurement and verification. We highlight the benefits of this process in three main application areas: (1) Probabilistic Load Forecasting for Apartment-Level Hourly Loads; (2) Submeter Load Forecasting and Segmentation; (3) Measurement and Verification for Behavioral Demand Response. Results show the model achieves a similar performance to ARIMA, another popular time series model, when predicting individual apartment loads, and superior performance when predicting aggregate loads. Furthermore, we show that the model robustly captures uncertaintiesmore »in the forecasts while providing interpretable results, indicating the importance of, for example, temperature data in its predictions. Finally, our estimates for a behavioral demand response program indicate that it achieved energy savings; however, the confidence interval provided by the probabilistic model is wide. Overall, this probabilistic forecasting model accurately measures uncertainties in forecasts and provides interpretable results that can support building managers and policymakers with the goal of reducing energy use.« less
  2. Lenormand, Maxime (Ed.)
    Neighborhoods are the building blocks of cities, and thus significantly impact urban planning from infrastructure deployment to service provisioning. However, existing definitions of neighborhoods are often ill suited for planning in both scale and pattern of aggregation. Here, we propose a generalized, scalable approach using topological data analysis to identify barrier-enclosed neighborhoods on multiple scales with implications for understanding social mixing within cities and the design of urban infrastructure. Our method requires no prior domain knowledge and uses only readily available building parcel information. Results from three American cities (Houston, New York, San Francisco) indicate that our method identifies neighborhoods consistent with historical approaches. Additionally, we uncover a consistent scale in all three cities at which physical isolation drives neighborhood emergence. However, our methods also reveal differences between these cities: Houston, although more disconnected on larger spatial scales than New York and San Francisco, is less disconnected at smaller scales.
  3. Impact Statement The structure of social and organizational relationships in commercial building workplaces is a key component of work processes. Understanding this structure—typically described as a network of relational ties—can help designers of workspaces and managers of workplaces make decisions that promote the success of organizations. These networks are complex, and as a result, our traditional means of measuring them are time and cost intensive. In this paper, we present a novel method, the Interaction Model, for learning these network structures automatically through sensing data. When we compare the learned network to network data obtained through a survey, we find statistically significant correlation, demonstrating the success of our method. Two key strengths of our proposed method are, first, that it uncovers network patterns quickly, requiring just 10 weeks of data, and, second, that it is interpretable, relying on intuitive opportunities for social interaction. Data-driven inference of the structure of human systems within our built environment will enable the design and operation of engineered built spaces that promote our human-centered objectives.