skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1942124

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 13, 2024
  2. Improving the peer review process in a scientific manner shows promise. 
    more » « less
  3. It is common to see a handful of reviewers reject a highly novel paper, because they view, say, extensive experiments as far more important than novelty, whereas the community as a whole would have embraced the paper. More generally, the disparate mapping of criteria scores to final recommendations by different reviewers is a major source of inconsistency in peer review. In this paper we present a framework inspired by empirical risk minimization (ERM) for learning the community's aggregate mapping. The key challenge that arises is the specification of a loss function for ERM. We consider the class of L(p,q) loss functions, which is a matrix-extension of the standard class of Lp losses on vectors; here the choice of the loss function amounts to choosing the hyperparameters p and q. To deal with the absence of ground truth in our problem, we instead draw on computational social choice to identify desirable values of the hyperparameters p and q. Specifically, we characterize p=q=1 as the only choice of these hyperparameters that satisfies three natural axiomatic properties. Finally, we implement and apply our approach to reviews from IJCAI 2017. 
    more » « less