Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Amniote skulls are diverse in shape and skeletal composition, which is the basis of much adaptive diversification within this clade. Major differences in skull shape are established early in development, at a critical developmental interval spanning the initial outgrowth and fusion of the facial processes. In birds, this is orchestrated by domains of Shh and Fgf8 expression, known as the frontonasal ectodermal zone (FEZ). It is unclear whether this model of facial development applies to species with diverse facial skeletons, especially species possessing a skull morphology representative of early amniotes. By investigating facial morphogenesis in the lizard, Anolis sagrei, we show that reptilian skull development is driven by the same genes as mammals and birds, but the manner in which those genes regulate facial development is clade-specific. These genes are not expressed in the frontal-nasal prominence, the region of the avian FEZ. Downregulating Shh and Fgf8 signaling disrupts normal facial development, but in pathway-specific ways. Our results demonstrate that early facial morphogenesis in lizards does not conform to the FEZ model. Lizard skull development may be more representative of the ancestral amniote than other model species with highly derived facial skeletons suggesting that the FEZ may be an avian-specific novelty.more » « lessFree, publicly-accessible full text available January 24, 2026
-
Adaptive radiations are characterized by an increase in species and/or phenotypic diversity as organisms fill open ecological niches. Often, the putative adaptive radiation has been studied without explicit comparison to the patterns and rates of evolution of closely related clades, leaving open the question whether notable changes in evolutionary process indeed occurred at the origin of the group. Anolis lizards are an oft-used model for investigating the tempo and mode of adaptive radiations. Most of the prior research on the diversification of Anolis morphology has focused on the post-cranium because of its significance towards subdivision of the arboreal habitat. But the remarkable diversity in head shape in anoles has not been as thoroughly investigated. It remains unknown whether the tempo or mode of head shape diversification changed as anoles diversified. We performed geometric morphometric analysis of skull shape across a sample of 12 Iguanian families (110 species), including anoles. Anolis lizards occupy a unique area and a wider region of morphological space compared to the 11 other families examined. We did not find a difference in the evolutionary rate of head shape diversification between anoles and their relatives. Rather, the extraordinary amount of skull diversity arose through a distinct mode of evolution; anoles moved into novel regions by relatively large morphological transitions across morphological space compared to their relatives. Our results demonstrate that traits not directly tied to the adaptive shift of a lineage into unique ecological spaces may undergo exceptional patterns of change as the clade diversifies.more » « less
-
Adaptive thermal tolerance plasticity can dampen the negative effects of warming. However, our knowledge of tolerance plasticity is lacking for embryonic stages that are relatively immobile and may benefit the most from an adaptive plastic response. We tested for heat hardening capacity (a rapid increase in thermal tolerance that manifests in minutes to hours) in embryos of the lizard Anolis sagrei. We compared the survival of a lethal temperature exposure between embryos that either did (hardened) or did not (not hardened) receive a high but non-lethal temperature pre-treatment. We also measured heart rates (HRs) at common garden temperatures before and after heat exposures to assess metabolic consequences. 'Hardened' embryos had significantly greater survival after lethal heat exposure relative to 'not hardened' embryos. That said, heat pre-treatment led to a subsequent increase in embryo HR that did not occur in embryos that did not receive pre-treatment, indicative of an energetic cost of mounting the heat hardening response. Our results are not only consistent with adaptive thermal tolerance plasticity in these embryos (greater heat survival after heat exposure), but also highlight associated costs. Thermal tolerance plasticity may be an important mechanism by which embryos respond to warming that warrants greater consideration.more » « less
An official website of the United States government

Full Text Available