skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1942370

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This study synthesizes the current understanding of the hydrological, impact, and adaptation processes underlying drought‐to‐flood events (i.e., consecutive drought and flood events), and how they interact. Based on an analysis of literature and a global assessment of historic cases, we show how drought can affect flood risk and assess under which circumstances drought‐to‐flood interactions can lead to increased or decreased risk. We make a distinction between hydrological, socio‐economic and adaptation processes. Hydrological processes include storage and runoff processes, which both seem to mostly play a role when the drought is a multiyear event and when the flood occurs during the drought. However, which process is dominant when and where, and how this is influenced by human intervention needs further research. Processes related to socio‐economic impacts have been studied less than hydrological processes, but in general, changes in vulnerability seem to play an important role in increasing or decreasing drought‐to‐flood impacts. Additionally, there is evidence of increased water quality problems due to drought‐to‐flood events, when compared to drought or flood events by themselves. Adaptation affects both hydrological (e.g., through groundwater extraction) or socio‐economic (e.g., influencing vulnerability) processes. There are many examples of adaptation, but there is limited evidence of when and where certain processes occur and why. Overall, research on drought‐to‐flood events is scarce. To increase our understanding of drought‐to‐flood events we need more comprehensive studies on the underlying hydrological, socio‐economic, and adaptation processes and their interactions, as well as the circumstances that lead to the dominance of certain processes. This article is categorized under:Science of Water > Hydrological ProcessesScience of Water > Water Extremes 
    more » « less
  2. Understanding the nature of climatic change impacts on spatial and temporal hydroclimatic patterns is important to the development of timely and spatially explicit adaptation options. However, regime-switching behavior of hydroclimatic variables complicates the modelling process as many traditional time series methods do not capture this behavior. Accurately representing spatial correlation across hydroclimatic regimes is particularly important for water resources planning in large watersheds such as the Colorado River, and regions where interbasin transfers and shared demand nodes link multiple watersheds. Here, we developed a hidden Markov model (HMM) with covariates that generates an ensemble of plausible future regional scenarios of the Palmer modified drought index (PMDI) for any projected temperature sequence. The resulting spatially explicit scenarios represent the historical spatial and temporal patterns of the training data while incorporating non-stationarity by conditioning on temperature. These ensembles can aid water resources managers, infrastructure planners, and government policymakers tasked with building of more resilient water systems. Moreover, these ensembles can be used to generate streamflow ensembles, which, in turn, will be a valuable input to study the impact of climate change on regional hydrology. 
    more » « less
    Free, publicly-accessible full text available June 13, 2026
  3. This repository contains R scripts for implementing a computationally efficient 4-state Hidden Markov Model (HMM) that uses temperature as a covariate to generate ensembles of plausible Palmer Modified Drought Index (PMDI) scenarios across the Western U.S. The model uses paleo PMDI data, which spans from 1500 to 1980 with a matrix grid of 1823 x 481 (e.g., 1823 grid-cells and 481 years). Similarly, paleo temperature data covers the same period, arranged in a matrix grid of 1637 grid cells by 481 years. To address the high dimensionality of the datasets, Principal Component Analysis (PCA) is applied to each variable, and the first six principal components (PCs) from both PMDI and temperature are retained as input to the HMM. The trained HMM is then used to simulate future PMDI scenarios by leveraging bias-corrected CMIP6 temperature projections under the Shared Socioeconomic Pathway (SSP) 2–4.5 scenario. The HMM framework is designed to capture the spatiotemporal variability and regime-shifting behavior of hydroclimatic patterns. It provides critical insights into the spatial correlation of wet and dry conditions across the Western U.S., supporting regional drought risk assessment and long-term water resource planning. For a more detailed description of the model, please refer to the following paper: Tezcan, B., & Garcia, M. (2025). Training a hidden Markov model with PMDI and temperature to create climate informed scenarios. Frontiers in Water, 7, Article 1472695. https://doi.org/10.3389/frwa.2025.1472695 
    more » « less
  4. Free, publicly-accessible full text available January 1, 2026
  5. This dissertation provides a foundation for understanding how water governance has changed over time, how watershed positionality and governance level shape the goals and strategies as well as the coordination of organizations actively involved in water issues, and how local, rural stakeholders changed legacy groundwater management. The first study examines the evolution of Colorado River Basin water management over the last century to understand how changing environmental conditions and path dependency have shaped past water management changes. Improved understanding can help inform policy responses to current challenges. The combined spatial, temporal, and network analyses show that Colorado River Basin water governance has been influenced by 100 years of rules that are layered and still in place. The rules have evolved water management strategies over time, shifted the emphasis of water management actions, and changed the distribution of authority across actions and rule levels. The second study explores how water management coordination varies based on governance level and physical location in the watershed. Additionally, this study analyzes how the level of governance and hydrologic position of organizations shape goals, strategies, and beliefs about the risks and benefits of changes to Colorado River Basin water management factors. The content and cluster analysis found the level of governance more influential than the hydrologic position and that coalitions can rearrange in a short period of time based on how the issue is framed. The last study unveils how local, rural residents were able to change legacy groundwater management through a process that began with a social movement to a ballot initiative to public input on groundwater management via a management goal-setting policy process in the Douglas Groundwater Basin in Arizona. The framing analysis shows that the public can identify problems and solutions, including paired solutions, but residents do not know whom to identify as being responsible for addressing water management in the basin. 
    more » « less
    Free, publicly-accessible full text available December 16, 2025
  6. The 1922 Colorado River Compact started the long history of water governance in the Colorado River Basin. Over the last century, the institutional structure has shaped water governance in the basin. However, an understanding of the long-term evolution is lacking. This study examines how water management strategies have evolved at the basin scale by incorporating institutional, temporal, and network structure analysis methods to examine long-term changes. Content analysis was employed to systematically investigate encouraged and/or discouraged water management actions at different rule levels. The water governance network was examined at four points in time to map the institutional structure, actors, and governance level at which rules are issued and targeted. Using institutional analysis, we found constitutional, operational, and collective-choice level rules for water supply, storage, movement, and use have been altered via layering of new governance rules without major rule or responsibility alteration. The network analysis results indicate that key decision-making positions have remained and actors who issue and are targeted by the rules lack significant change. We found original positions of power have been maintained, potentially stagnating the space for problem-solving and management strategy renegotiation. Our results indicate that path dependency has shaped water governance and who is able to influence decision-making. 
    more » « less
    Free, publicly-accessible full text available November 26, 2025
  7. Droughts are often long-lasting phenomena, without a distinct start or end and with impacts cascading across sectors and systems, creating long-term legacies. Nevertheless, our current perceptions and management of droughts and their impacts are often event-based, which can limit the effective assessment of drought risks and reduction of drought impacts. Here, we advocate for changing this perspective and viewing drought as a hydrological–ecological–social continuum. We take a systems theory perspective and focus on how “memory” causes feedback and interactions between parts of the interconnected systems at different timescales. We first discuss the characteristics of the drought continuum with a focus on the hydrological, ecological, and social systems separately, and then we study the system of systems. Our analysis is based on a review of the literature and a study of five cases: Chile, the Colorado River basin in the USA, northeast Brazil, Kenya, and the Rhine River basin in northwest Europe. We find that the memories of past dry and wet periods, carried by both bio-physical (e.g. groundwater, vegetation) and social systems (e.g. people, governance), influence how future drought risk manifests. We identify four archetypes of drought dynamics: impact and recovery, slow resilience building, gradual collapse, and high resilience–big shock. The interactions between the hydrological, ecological, and social systems result in systems shifting between these types, which plays out differently in the five case studies. We call for more research on drought preconditions and recovery in different systems, on dynamics cascading between systems and triggering system changes, and on dynamic vulnerability and maladaptation. Additionally, we advocate for more continuous monitoring of drought hazards and impacts, modelling tools that better incorporate memories and adaptation responses, and management strategies that increase societal and institutional memory. This will help us to better deal with the complex hydrological–ecological–social drought continuum and identify effective pathways to adaptation and mitigation. 
    more » « less