skip to main content

Search for: All records

Award ID contains: 1942437

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Organismal communication entails encoding a message that is sent over space or time to a recipient cell, where that message is decoded to activate a downstream response. Defining what qualifies as a functional signal is essential for understanding intercellular communication. In this review, we delve into what is known and unknown in the field of long-distance messenger RNA (mRNA) movement and draw inspiration from the field of information theory to provide a perspective on what defines a functional signaling molecule. Although numerous studies support the long-distance movement of hundreds to thousands of mRNAs through the plant vascular system, only a small handful of these transcripts have been associated with signaling functions. Deciphering whether mobile mRNAs generally serve a role in plant communication has been challenging, due to our current lack of understanding regarding the factors that influence mRNA mobility. Further insight into unsolved questions regarding the nature of mobile mRNAs could provide an understanding of the signaling potential of these macromolecules.
    Free, publicly-accessible full text available June 1, 2024
  2. Slotte, Tanja (Ed.)
    Abstract Euphorbia peplus (petty spurge) is a small, fast-growing plant that is native to Eurasia and has become a naturalized weed in North America and Australia. E. peplus is not only medicinally valuable, serving as a source for the skin cancer drug ingenol mebutate, but also has great potential as a model for latex production owing to its small size, ease of manipulation in the laboratory, and rapid reproductive cycle. To help establish E. peplus as a new model, we generated a 267.2 Mb Hi-C-anchored PacBio HiFi nuclear genome assembly with an BUSCO score of 98.5%, a genome annotation based on RNA-seq data from six organs, and publicly accessible tools including a genome browser and an interactive organ-specific expression atlas. Chromosome number is highly variable across Euphorbia species. Using a comparative analysis of our newly sequenced E. peplus genome with other Euphorbiaceae genomes, we show that variation in Euphorbia chromosome number between E. peplus and E. lathyris is likely due to fragmentation and rearrangement rather than chromosomal duplication followed by diploidization of the duplicated sequence. Moreover, we found that the E. peplus genome is relatively compact compared to related members of the genus in part due to restricted expansion ofmore »the Ty3 transposon family. Finally, we identify a large gene cluster that contains many previously identified enzymes in the putative ingenol mebutate biosynthesis pathway, along with additional gene candidates for this biosynthetic pathway. The genomic resources we have created for E. peplus will help advance research on latex production and ingenol mebutate biosynthesis in the commercially important Euphorbiaceae family.« less
    Free, publicly-accessible full text available February 9, 2024
  3. Abstract The Solanaceae or “nightshade” family is an economically important group with remarkable diversity. To gain a better understanding of how the unique biology of the Solanaceae relates to the family’s small RNA (sRNA) genomic landscape, we downloaded over 255 publicly available sRNA data sets that comprise over 2.6 billion reads of sequence data. We applied a suite of computational tools to predict and annotate two major sRNA classes: (1) microRNAs (miRNAs), typically 20- to 22-nucleotide (nt) RNAs generated from a hairpin precursor and functioning in gene silencing and (2) short interfering RNAs (siRNAs), including 24-nt heterochromatic siRNAs typically functioning to repress repetitive regions of the genome via RNA-directed DNA methylation, as well as secondary phased siRNAs and trans-acting siRNAs generated via miRNA-directed cleavage of a polymerase II-derived RNA precursor. Our analyses described thousands of sRNA loci, including poorly understood clusters of 22-nt siRNAs that accumulate during viral infection. The birth, death, expansion, and contraction of these sRNA loci are dynamic evolutionary processes that characterize the Solanaceae family. These analyses indicate that individuals within the same genus share similar sRNA landscapes, whereas comparisons between distinct genera within the Solanaceae reveal relatively few commonalities.
  4. Abstract Grafting has been adopted for a wide range of crops to enhance productivity and resilience; for example, grafting of Solanaceous crops couples disease-resistant rootstocks with scions that produce high-quality fruit. However, incompatibility severely limits the application of grafting and graft incompatibility remains poorly understood. In grafts, immediate incompatibility results in rapid death, but delayed incompatibility can take months or even years to manifest, creating a significant economic burden for perennial crop production. To gain insight into the genetic mechanisms underlying this phenomenon, we developed a model system using heterografting of tomato (Solanum lycopersicum) and pepper (Capsicum annuum). These grafted plants express signs of anatomical junction failure within the first week of grafting. By generating a detailed timeline for junction formation, we were able to pinpoint the cellular basis for this delayed incompatibility. Furthermore, we inferred gene regulatory networks for compatible self-grafts and incompatible heterografts based on these key anatomical events, which predict core regulators for grafting. Finally, we examined the role of vascular development in graft formation and uncovered SlWOX4 as a potential regulator of graft compatibility. Following this predicted regulator up with functional analysis, we show that Slwox4 homografts fail to form xylem bridges across the junction, demonstratingmore »that indeed, SlWOX4 is essential for vascular reconnection during grafting, and may function as an early indicator of graft failure.« less