skip to main content


Search for: All records

Award ID contains: 1942702

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Nearly 50 million people globally have been internally displaced due to conflict, persecution and human rights violations. However, the study of internally displaced persons—and the design of policies to assist them—is complicated by the fact that these people are often underrepresented in surveys and official statistics. We develop an approach to measure the impact of violence on internal displacement using anonymized high-frequency mobile phone data. We use this approach to quantify the short- and long-term impacts of violence on internal displacement in Afghanistan, a country that has experienced decades of conflict. Our results highlight how displacement depends on the nature of violence. High-casualty events, and violence involving the Islamic State, cause the most displacement. Provincial capitals act as magnets for people fleeing violence in outlying areas. Our work illustrates the potential for non-traditional data sources to facilitate research and policymaking in conflict settings.

     
    more » « less
  2. Hundreds of millions of poor families receive some form of targeted social assistance. Many of these antipoverty programs involve some degree of geographic targeting, where aid is prioritized to the poorest regions of the country. However, policy makers in many low-resource settings lack the disaggregated poverty data required to make effective geographic targeting decisions. Using several independent datasets from Nigeria, this paper shows that high-resolution poverty maps, constructed by applying machine learning algorithms to satellite imagery and other nontraditional geospatial data, can improve the targeting of government cash transfers to poor families. Specifically, we find that geographic targeting relying on machine learning–based poverty maps can reduce errors of exclusion and inclusion relative to geographic targeting based on recent nationally representative survey data. This result holds for antipoverty programs that target both the poor and the extreme poor and for initiatives of varying sizes. We also find no evidence that machine learning–based maps increase targeting disparities by demographic groups, such as gender or religion. Based in part on these findings, the Government of Nigeria used this approach to geographically target emergency cash transfers in response to the COVID-19 pandemic. 
    more » « less
  3. Abstract The COVID-19 pandemic has devastated many low- and middle-income countries, causing widespread food insecurity and a sharp decline in living standards 1 . In response to this crisis, governments and humanitarian organizations worldwide have distributed social assistance to more than 1.5 billion people 2 . Targeting is a central challenge in administering these programmes: it remains a difficult task to rapidly identify those with the greatest need given available data 3,4 . Here we show that data from mobile phone networks can improve the targeting of humanitarian assistance. Our approach uses traditional survey data to train machine-learning algorithms to recognize patterns of poverty in mobile phone data; the trained algorithms can then prioritize aid to the poorest mobile subscribers. We evaluate this approach by studying a flagship emergency cash transfer program in Togo, which used these algorithms to disburse millions of US dollars worth of COVID-19 relief aid. Our analysis compares outcomes—including exclusion errors, total social welfare and measures of fairness—under different targeting regimes. Relative to the geographic targeting options considered by the Government of Togo, the machine-learning approach reduces errors of exclusion by 4–21%. Relative to methods requiring a comprehensive social registry (a hypothetical exercise; no such registry exists in Togo), the machine-learning approach increases exclusion errors by 9–35%. These results highlight the potential for new data sources to complement traditional methods for targeting humanitarian assistance, particularly in crisis settings in which traditional data are missing or out of date. 
    more » « less
  4. Many critical policy decisions, from strategic investments to the allocation of humanitarian aid, rely on data about the geographic distribution of wealth and poverty. Yet many poverty maps are out of date or exist only at very coarse levels of granularity. Here we develop microestimates of the relative wealth and poverty of the populated surface of all 135 low- and middle-income countries (LMICs) at 2.4 km resolution. The estimates are built by applying machine-learning algorithms to vast and heterogeneous data from satellites, mobile phone networks, and topographic maps, as well as aggregated and deidentified connectivity data from Facebook. We train and calibrate the estimates using nationally representative household survey data from 56 LMICs and then validate their accuracy using four independent sources of household survey data from 18 countries. We also provide confidence intervals for each microestimate to facilitate responsible downstream use. These estimates are provided free for public use in the hope that they enable targeted policy response to the COVID-19 pandemic, provide the foundation for insights into the causes and consequences of economic development and growth, and promote responsible policymaking in support of sustainable development. 
    more » « less
  5. Abstract Policymakers everywhere are working to determine the set of restrictions that will effectively contain the spread of COVID-19 without excessively stifling economic activity. We show that publicly available data on human mobility—collected by Google, Facebook, and other providers—can be used to evaluate the effectiveness of non-pharmaceutical interventions (NPIs) and forecast the spread of COVID-19. This approach uses simple and transparent statistical models to estimate the effect of NPIs on mobility, and basic machine learning methods to generate 10-day forecasts of COVID-19 cases. An advantage of the approach is that it involves minimal assumptions about disease dynamics, and requires only publicly-available data. We evaluate this approach using local and regional data from China, France, Italy, South Korea, and the United States, as well as national data from 80 countries around the world. We find that NPIs are associated with significant reductions in human mobility, and that changes in mobility can be used to forecast COVID-19 infections. 
    more » « less
  6. null (Ed.)
    Recent papers demonstrate that non-traditional data, from mobile phones and other digital sensors, can be used to roughly estimate the wealth of individual subscribers. This paper asks a question more directly relevant to development policy: Can non-traditional data be used to more efficiently target development aid? By combining rich survey data from a "big push" anti-poverty program in Afghanistan with detailed mobile phone logs from program beneficiaries, we study the extent to which machine learning methods can accurately differentiate ultra-poor households eligible for program benefits from other households deemed ineligible. We show that supervised learning methods leveraging mobile phone data can identify ultra-poor households as accurately as standard survey-based measures of poverty, including consumption and wealth; and that combining survey-based measures with mobile phone data produces classifications more accurate than those based on a single data source. We discuss the implications and limitations of these methods for targeting extreme poverty in marginalized populations. 
    more » « less
  7. null (Ed.)
    While real-world decisions involve many competing objectives, algorithmic decisions are often evaluated with a single objective function. In this paper, we study algorithmic policies which explicitly trade off between a private objective (such as profit) and a public objective (such as social welfare). We analyze a natural class of policies which trace an empirical Pareto frontier based on learned scores, and focus on how such decisions can be made in noisy or data-limited regimes. Our theoretical results characterize the optimal strategies in this class, bound the Pareto errors due to inaccuracies in the scores, and show an equivalence between optimal strategies and a rich class of fairness-constrained profit-maximizing policies. We then present empirical results in two different contexts — online content recommendation and sustainable abalone fisheries — to underscore the generality of our approach to a wide range of practical decisions. Taken together, these results shed light on inherent trade-offs in using machine learning for decisions that impact social welfare. 
    more » « less