skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1942851

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Aldrich, Jonathan; Salvaneschi, Guido (Ed.)
    Timing channel attacks are emerging as real-world threats to computer security. In cryptographic systems, an effective countermeasure against timing attacks is the constant-time programming discipline. However, strictly enforcing the discipline manually is both time-consuming and error-prone. While various tools exist for analyzing/verifying constant-time programs, they sacrifice at least one feature among precision, soundness and efficiency. In this paper, we build CtChecker, a sound static analysis for constant-time programming. Under the hood, CtChecker uses a static information flow analysis to identify violations of constant-time discipline. Despite the common wisdom that sound, static information flow analysis lacks precision for real-world applications, we show that by enabling field-sensitivity, context-sensitivity and partial flow-sensitivity, CtChecker reports fewer false positives compared with existing sound tools. Evaluation on real-world cryptographic systems shows that CtChecker analyzes 24K lines of source code in under one minute. Moreover, CtChecker reveals that some repaired code generated by program rewriters supposedly remove timing channels are still not constant-time. 
    more » « less
  2. Cache side-channel attacks leverage secret-dependent footprints in CPU cache to steal confidential information, such as encryption keys. Due to the lack of a proper abstraction for reasoning about cache side channels, existing static program analysis tools that can quantify or mitigate cache side channels are built on very different kinds of abstractions. As a consequence, it is hard to bridge advances in quantification and mitigation research. Moreover, existing abstractions lead to imprecise results. In this paper, we present a novel abstraction, called differential set, for analyzing cache side channels at compile time. A distinguishing feature of differential sets is that it allows compositional and precise reasoning about cache side channels. Moreover, it is the first abstraction that carries sufficient information for both side channel quantification and mitigation. Based on this new abstraction, we develop a static analysis tool DSA that automatically quantifies and mitigates cache side channel leakage at the same time. Experimental evaluation on a set of commonly used benchmarks shows that DSA can produce more precise leakage bound as well as mitigated code with fewer memory footprints, when compared with state-of-the-art tools that only quantify or mitigate cache side channel leakage. 
    more » « less
  3. The high-profile Spectre attack and its variants have revealed that speculative execution may leave secret-dependent footprints in the cache, allowing an attacker to learn confidential data. However, existing static side-channel detectors either ignore speculative execution, leading to false negatives, or lack a precise cache model, leading to false positives. In this paper, somewhat surprisingly, we show that it is challenging to develop a speculation-aware static analysis with precise cache models: a combination of existing works does not necessarily catch all cache side channels. Motivated by this observation, we present a new semantic definition of security against cache-based side-channel attacks, called Speculative-Aware noninterference (SANI), which is applicable to a variety of attacks and cache models. We also develop SpecSafe to detect the violations of SANI. Unlike other speculation-aware symbolic executors, SpecSafe employs a novel program transformation so that SANI can be soundly checked by speculation-unaware side-channel detectors. SpecSafe is shown to be both scalable and accurate on a set of moderately sized benchmarks, including commonly used cryptography libraries. 
    more » « less