Puncture is a vital mechanism for survival in a wide range of organisms across phyla, serving biological functions such as prey capture, defense, and reproduction. Understanding how the shape of the puncture tool affects its functional performance is crucial to uncovering the mechanics underlying the diversity and evolution of puncture-based systems. However, such form-function relationships are often complicated by the dynamic nature of living systems. Puncture systems in particular operate over a wide range of speeds to penetrate biological tissues. Current studies on puncture biomechanics lack systematic characterization of the complex, rate-mediated, interaction between tool and material across this dynamic range. To fill this knowledge gap, we establish a highly controlled experimental framework for dynamic puncture to investigate the relationship between the puncture performance (characterized by the depth of puncture) and the tool sharpness (characterized by the cusp angle) across a wide range of bio-relevant puncture speeds (from quasi-static to
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract 50 m/s). Our results show that the sensitivity of puncture performance to variations in tool sharpness reduces at higher puncture speeds. This trend is likely due to rate-based viscoelastic and inertial effects arising from how materials respond to dynamic loads. The rate-dependent form-function relationship has important biological implications: While passive/low-speed puncture organisms likely rely heavily on sharp puncture tools to successfully penetrate and maintain functionalities, higher-speed puncture systems may allow for greater variability in puncture tool shape due to the relatively geometric-insensitive puncture performance, allowing for higher adaptability during the evolutionary process to other mechanical factors.$$\sim$$ Free, publicly-accessible full text available December 1, 2024 -
ABSTRACT When designing experimental studies, it is important to understand the biological context of the question being asked. For example, many biological puncture experiments embed the puncture tool to a standardized depth based on a percentage of the total tool length, to compare the performance between tools. However, this may not always be biologically relevant to the question being asked. To understand how definitions of penetration depth may influence comparative results, we performed puncture experiments on a series of venomous snake fangs using the venom pore location as a functionally relevant depth standard. After exploring variation in pore placement across snake phylogeny, we compared the work expended during puncture experiments across a set of snake fangs using various depth standards: puncture initiation, penetration to a series of depths defined by the venom pore and penetration to 15% of fang length. Contrary to our hypothesis, we found almost no pattern in pore placement between clades, dietary groups or venom toxicity. Rank correlation statistics of our experimental energetics results showed no difference in the broad comparison of fangs when different puncture depth standards were used. However, pairwise comparisons between fangs showed major shifts in significance patterns between the different depth standards used. These results imply that the interpretation of experimental puncture data will heavily depend upon which depth standard is used during the experiments. Our results illustrate the importance of understanding the biological context of the question being addressed when designing comparative experiments.
-
Free, publicly-accessible full text available May 1, 2025
-
Biological puncture systems use a diversity of morphological tools (stingers, teeth, spines etc.) to penetrate target tissues for a variety of functions (prey capture, defence, reproduction). These systems are united by a set of underlying physical rules which dictate their mechanics. While previous studies have illustrated form–function relationships in individual systems, these underlying rules have not been formalized. We present a mathematical model for biological puncture events based on energy balance that allows for the derivation of analytical scaling relations between energy expenditure and shape, size and material response. The model identifies three necessary energy contributions during puncture: fracture creation, elastic deformation of the material and overcoming friction during penetration. The theoretical predictions are verified using finite-element analyses and experimental tests. Comparison between different scaling relationships leads to a ratio of released fracture energy and deformation energy contributions acting as a measure of puncture efficiency for a system that incorporates both tool shape and material response. The model represents a framework for exploring the diversity of biological puncture systems in a rigorous fashion and allows future work to examine how fundamental physical laws influence the evolution of these systems.more » « less
-
ABSTRACT Some host species of avian obligate brood parasites reject parasitic eggs from their nest whereas others accept them, even though they recognize them as foreign. One hypothesis to explain this seemingly maladaptive behavior is that acceptors are unable to pierce and remove the parasitic eggshell. Previous studies reporting on the force and energy required to break brood parasites' eggshells were typically static tests performed against hard substrate surfaces. Here, we considered host nest as a substrate to simulate this potentially critical aspect of the natural context for egg puncture while testing the energy required to break avian eggshells. Specifically, as a proof of concept, we punctured domestic chicken eggs under a series of conditions: varying tool shape (sharp versus blunt), tool dynamics (static versus dynamic) and the presence of natural bird nests (of three host species). The results show a complex set of statistically significant interactions between tool shapes, puncture dynamics and nest substrates. Specifically, the energy required to break eggs was greater for the static tests than for the dynamic tests, but only when using a nest substrate and a blunt tool. In turn, in the static tests, the addition of a nest significantly increased energy requirements for both tool types, whereas during dynamic tests, the increase in energy associated with the nest presence was significant only when using the sharp tool. Characterizing the process of eggshell puncture in increasingly naturalistic contexts will help in understanding whether and how hosts of brood parasites evolve to reject foreign eggs.more » « less