skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1943020

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract As the prospect of engineering primary B‐cells for cellular therapies in cancer, autoimmune diseases, and infectious diseases grows, there is an increasing demand for robust in vitro culture systems that effectively activate human B‐cells isolated from peripheral blood for consistent and efficient expansion and differentiation into various effector phenotypes. Feeder cell‐based systems have shown promise in providing long‐term signaling for expanding B‐cells in vitro. However, these co‐culture systems necessitate more rigorous downstream processing to prevent various feeder cell‐related contaminations in the final product, which limits their clinical potential. In this study, we introduce a microbead‐based CD40L‐presentation platform for stable and consistent activation of human naïve B‐cells. By employing a completely synthetic in vitro culture approach integrating B‐cell receptor, CD21 co‐receptor, toll‐like receptor (TLR‐9), and cytokine signals, we demonstrate that naïve B‐cells can differentiate into memory B‐cells (IgD‐CD38‐/lo + CD27+) and antibody‐secreting cells (IgD‐CD38++CD27+). During this process, B‐cells underwent up to a 50‐fold expansion, accompanied by isotype class switching and low levels of somatic hypermutation, mimicking physiological events within the germinal center. The reproducible generation of highly expanded and differentiated effector B‐cells from naïve B‐cells of multiple donors positions this feeder‐free in vitro synthetic niche as a promising platform for large‐scale production of effector B‐cell therapeutics. 
    more » « less
  2. Free, publicly-accessible full text available September 4, 2026