skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1943699

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract When performing time-intensive optimization tasks, such as those in topology or shape optimization, researchers have turned to machine-learned inverse design (ID) methods—i.e., predicting the optimized geometry from input conditions—to replace or warm start traditional optimizers. Such methods are often optimized to reduce the mean squared error (MSE) or binary cross entropy between the output and a training dataset of optimized designs. While convenient, we show that this choice may be myopic. Specifically, we compare two methods of optimizing the hyperparameters of easily reproducible machine learning models including random forest, k-nearest neighbors, and deconvolutional neural network model for predicting the three optimal topology problems. We show that under both direct inverse design and when warm starting further topology optimization, using MSE metrics to tune hyperparameters produces less performance models than directly evaluating the objective function, though both produce designs that are almost one order of magnitude better than using the common uniform initialization. We also illustrate how warm starting impacts both the convergence time, the type of solutions obtained during optimization, and the final designs. Overall, our initial results portend that researchers may need to revisit common choices for evaluating ID methods that subtly tradeoff factors in how an ID method will actually be used. We hope our open-source dataset and evaluation environment will spur additional research in those directions. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Abstract Adjoint-based design optimizations are usually computationally expensive and those costs scale with resolution. To address this, researchers have proposed machine learning approaches for inverse design that can predict higher-resolution solutions from lower cost/resolution ones. Due to the recent success of diffusion models over traditional generative models, we extend the use of diffusion models for multi-resolution tasks by proposing the conditional cascaded diffusion model (cCDM). Compared to GANs, cCDM is more stable to train, and each diffusion model within the cCDM can be trained independently, thus each model’s parameters can be tuned separately to maximize the performance of the pipeline. Our study compares cCDM against a cGAN model with transfer learning. Our results demonstrate that the cCDM excels in capturing finer details, preserving volume fraction constraints, and minimizing compliance errors in multi-resolution tasks when a sufficient amount of high-resolution training data (more than 102 designs) is available. Furthermore, we explore the impact of training data size on the performance of both models. While both models show decreased performance with reduced high-resolution training data, the cCDM loses its superiority to the cGAN model with transfer learning when training data is limited (less than 102), and we show the break-even point for this transition. Also, we highlight that while the diffusion model may achieve better pixel-wise performance in both low-resolution and high-resolution scenarios, this does not necessarily guarantee that the model produces optimal compliance error or constraint satisfaction. 
    more » « less
  3. Abstract In Topology Optimization (TO) and related engineering applications, physics-constrained simulations are often used to optimize candidate designs given some set of boundary conditions. However, such models are computationally expensive and do not guarantee convergence to a desired result, given the frequent non-convexity of the performance objective. Creating data-based approaches to warm-start these models — or even replace them entirely — has thus been a top priority for researchers in this area of engineering design. In this paper, we present a new dataset of two-dimensional heat sink designs optimized via Multiphysics Topology Optimization (MTO). Further, we propose an augmented Vector-Quantized GAN (VQGAN) that allows for effective MTO data compression within a discrete latent space, known as a codebook, while preserving high reconstruction quality. To concretely assess the benefits of the VQGAN quantization process, we conduct a latent analysis of its codebook as compared to the continuous latent space of a deep AutoEncoder (AE). We find that VQGAN can more effectively learn topological connections despite a high rate of data compression. Finally, we leverage the VQGAN codebook to train a small GPT-2 model, generating thermally performant heat sink designs within a fraction of the time taken by conventional optimization approaches. We show the transformer-based approach is more effective than using a Deep Convolutional GAN (DCGAN) due to its elimination of mode collapse issues, as well as better preservation of topological connections in MTO and similar applications. 
    more » « less
  4. Many design problems involve reasoning about points in high-dimensional space. A common strategy is to first embed these high-dimensional points into a low-dimensional latent space. We propose that a good embedding should be isometric—i.e., preserving the geodesic distance between points on the data manifold in the latent space. However, enforcing isometry is non-trivial for common neural embedding models such as autoencoders. Moreover, while theoretically appealing, it is unclear to what extent is enforcing isometry necessary for a given design analysis. This paper answers these questions by constructing an isometric embedding via an isometric autoencoder, which we employ to analyze an inverse airfoil design problem. Specifically, the paper describes how to train an isometric autoencoder and demonstrates its usefulness compared to non-isometric autoencoders on the UIUC airfoil dataset. Our ablation study illustrates that enforcing isometry is necessary for accurately discovering clusters through the latent space. We also show how isometric autoencoders can uncover pathologies in typical gradient-based shape optimization solvers through an analysis on the SU2-optimized airfoil dataset, wherein we find an over-reliance of the gradient solver on the angle of attack. Overall, this paper motivates the use of isometry constraints in neural embedding models, particularly in cases where researchers or designers intend to use distance-based analysis measures to analyze designs within the latent space. While this work focuses on airfoil design as an illustrative example, it applies to any domain where analyzing isometric design or data embeddings would be useful. 
    more » « less
  5. This paper introduces Least Volume—a simple yet effective regularization inspired by geometric intuition—that can reduce the necessary number of latent dimensions needed by an autoencoder without requiring any prior knowledge of the intrinsic dimensionality of the dataset. We show that the Lipschitz continuity of the decoder is the key to making it work, provide a proof that PCA is just a linear special case of it, and reveal that it has a similar PCA-like importance ordering effect when applied to nonlinear models. We demonstrate the intuition behind the regularization on some pedagogical toy problems, and its effectiveness on several benchmark problems, including MNIST, CIFAR-10 and CelebA. 
    more » « less
  6. Many data analysis and design problems involve reasoning about points in high-dimensional space. A common strategy is to embed points from this high-dimensional space into a low-dimensional one. As we will show in this paper, a critical property of good embeddings is that they preserve isometry — i.e., preserving the geodesic distance between points on the original data manifold within their embedded locations in the latent space. However, enforcing isometry is non-trivial for common Neural embedding models, such as autoencoders and generative models. Moreover, while theoretically appealing, it is not clear to what extent enforcing isometry is really necessary for a given design or analysis task. This paper answers these questions by constructing an isometric embedding via an isometric autoencoder, which we employ to analyze an inverse airfoil design problem. Specifically, the paper describes how to train an isometric autoencoder and demonstrates its usefulness compared to non-isometric autoencoders on both simple pedagogical examples and for airfoil embeddings using the UIUC airfoil dataset. Our ablation study illustrates that enforcing isometry is necessary to accurately discover latent space clusters — a common analysis method researchers typically perform on low-dimensional embeddings. We also show how isometric autoencoders can uncover pathologies in typical gradient-based Shape Optimization solvers through an analysis on the SU2-optimized airfoil dataset, wherein we find an over-reliance of the gradient solver on angle of attack. Overall, this paper motivates the use of isometry constraints in Neural embedding models, particularly in cases where researchers or designer intend to use distance-based analysis measures (such as clustering, k-Nearest Neighbors methods, etc.) to analyze designs within the latent space. While this work focuses on airfoil design as an illustrative example, it applies to any domain where analyzing isometric design or data embeddings would be useful. 
    more » « less
  7. Design optimization, and particularly adjoint-based multi-physics shape and topology optimization, is time-consuming and often requires expensive iterations to converge to desired designs. In response, researchers have developed Machine Learning (ML) approaches — often referred to as Inverse Design methods — to either replace or accelerate tools like Topology optimization (TO). However, these methods have their own hidden, non-trivial costs including that of data generation, training, and refinement of ML-produced designs. This begs the question: when is it actually worth learning Inverse Design, compared to just optimizing designs without ML assistance? This paper quantitatively addresses this question by comparing the costs and benefits of three different Inverse Design ML model families on a Topology Optimization (TO) task, compared to just running the optimizer by itself. We explore the relationship between the size of training data and the predictive power of each ML model, as well as the computational and training costs of the models and the extent to which they accelerate or hinder TO convergence. The results demonstrate that simpler models, such as K-Nearest Neighbors and Random Forests, are more effective for TO warmstarting with limited training data, while more complex models, such as Deconvolutional Neural Networks, are preferable with more data. We also emphasize the need to balance the benefits of using larger training sets with the costs of data generation when selecting the appropriate ID model. Finally, the paper addresses some challenges that arise when using ML predictions to warmstart optimization, and provides some suggestions for budget and resource management. 
    more » « less