Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A machine learning (ML) guided approach is presented for the accelerated optimization of chemical vapor deposition (CVD) synthesis of 2D materials toward the highest quality, starting from low‐quality or unsuccessful synthesis conditions. Using 26 sets of these synthesis conditions as the initial training dataset, our method systematically guides experimental synthesis towards optoelectronic‐grade monolayer MoS2flakes. A‐exciton linewidth (σA) as narrow as 38 meV could be achieved in 2D MoS2flakes after only an additional 35 trials (reflecting 15% of the full factorial design dataset for training purposes). In practical terms, this reflects a decrease of the possible experimental time to optimize the parameters from up to one year to about two months. This remarkable efficiency was achieved by formulating a constrained sequencing optimization problem solved via a combination of constraint learning and Bayesian Optimization with the narrowness of σAas the single target metric. By employing graph‐based semi‐supervised learning with data acquired through a multi‐criteria sampling method, the constraint model effectively delineates and refines the feasible design space for monolayer flake production. Additionally, the Gaussian Process regression effectively captures the relationships between synthesis parameters and outcomes, offering high predictive capability along with a measure of prediction uncertainty. This method is scalable to a higher number of synthesis parameters and target metrics and is transferrable to other materials and types of reactors. This study envisions that this method will be fundamental for CVD and similar techniques in the future.more » « less
-
Abstract Roll-to-roll (R2R) printing techniques are promising for high-volume continuous production of substrate-based electronic products, as opposed to the sheet-to-sheet approach suited for low-volume work. However, one of the major challenges in R2R flexible electronics printing is achieving tight alignment tolerances, as specified by the device resolution (usually at micrometer level), for multi-layer printed electronics. The alignment of the printed patterns in different layers, known as registration, is critical to product quality. Registration errors are essentially accumulated positional or dimensional deviations caused by un-desired variations in web tensions and web speeds. Conventional registration control methods rely on model-based feedback controllers, such as PID control, to regulate the web tension and the web speed. However, those methods can not guarantee that the registration error always converges to zero due to lagging problems. In this paper, we propose a Spatial-Terminal Iterative Learning Control (STILC) method combined with PID control to enable the registration error to converge to zero iteratively, which achieves unprecedented control in the creation, integration and manipulation of multi-layer microstructures in R2R processes. We simulate the registration error generation and accumulation caused by axis mismatch between roller and motor that commonly exists in R2R systems. We show that the STILC-PID hybrid control method can eliminate the registration error completely after a reasonable number of iterations. We also compare the performances of STILC with a constant-value basis and a cosine-form basis. The results show that the control model with a cosine-form basis provides a faster convergence speed for R2R registration error elimination.more » « less
-
Abstract Roll-to-Roll (R2R) printing techniques are promising for high-volume continuous production of substrate-based products, as opposed to sheet-to-sheet (S2S) approach suited for low-volume work. However, meeting the tight alignment tolerance requirements of additive multi-layer printed electronics specified by device resolution that is usually at micrometer scale has become a major challenge in R2R flexible electronics printing, preventing the fabrication technology from being transferred from conventional S2S to high-speed R2R production. Print registration in a R2R process is to align successive print patterns on the flexible substrate and to ensure quality printed devices through effective control of various process variables. Conventional model-based control methods require an accurate web-handling dynamic model and real-time tension measurements to ensure control laws can be faithfully derived. For complex multistage R2R systems, physics-based state-space models are difficult to derive, and real-time tension measurements are not always acquirable. In this paper, we present a novel data-driven model predictive control (DD-MPC) method to minimize the multistage register errors effectively. We show that the DD-MPC can handle multi-input and multi-output systems and obtain the plant model from sensor data via an Eigensystem Realization Algorithm (ERA) and Observer Kalman filter identification (OKID) system identification method. In addition, the proposed control scheme works for systems with partially measurable system states.more » « less
-
Free, publicly-accessible full text available September 1, 2026
-
Free, publicly-accessible full text available May 2, 2026
An official website of the United States government
