skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1943971

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Decision making under uncertainty often requires choosing packages, or bags of tuples, that collectively optimize expected outcomes while limiting risks. Processing Stochastic Package Queries (SPQs) involves solving very large optimization problems on uncertain data. Monte Carlo methods create numerous scenarios, or sample realizations of the stochastic attributes of all the tuples, and generate packages with optimal objective values across these scenarios. The number of scenarios needed for accurate approximation---and hence the size of the optimization problem when using prior methods---increases with variance in the data, and the search space of the optimization problem increases exponentially with the number of tuples in the relation. Existing solvers take hours to process SPQs on large relations containing stochastic attributes with high variance. Besides enriching the SPaQL language to capture a broader class of risk specifications, we make two fundamental contributions toward scalable SPQ processing. First, we propose risk-constraint linearization (RCL), which converts SPQs into Integer Linear Programs (ILPs) whose size is independent of the number of scenarios used. Solving these ILPs gives us feasible and near-optimal packages. Second, we propose Stochastic Sketch Refine, a divide and conquer framework that breaks down a large stochastic optimization problem into subproblems involving smaller subsets of tuples. Our experiments show that, together, RCL and Stochastic Sketch Refine produce high-quality packages in orders of magnitude lower runtime than the state of the art. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  2. A package query returns a package---a multiset of tuples---that maximizes or minimizes a linear objective function subject to linear constraints, thereby enabling in-database decision support. Prior work has established the equivalence of package queries to Integer Linear Programs (ILPs) and developed the SketchRefine algorithm for package query processing. While this algorithm was an important first step toward supporting prescriptive analytics scalably inside a relational database, it struggles when the data size grows beyond a few hundred million tuples or when the constraints become very tight. In this paper, we present Progressive Shading, a novel algorithm for processing package queries that can scale efficiently to billions of tuples and gracefully handle tight constraints. Progressive Shading solves a sequence of optimization problems over a hierarchy of relations, each resulting from an ever-finer partitioning of the original tuples into homogeneous groups until the original relation is obtained. This strategy avoids the premature discarding of high-quality tuples that can occur with SketchRefine. Our novel partitioning scheme, Dynamic Low Variance, can handle very large relations with multiple attributes and can dynamically adapt to both concentrated and spread-out sets of attribute values, provably outperforming traditional partitioning schemes such as kd-tree. We further optimize our system by replacing our off-the-shelf optimization software with customized ILP and LP solvers, called Dual Reducer and Parallel Dual Simplex respectively, that are highly accurate and orders of magnitude faster. 
    more » « less
  3. null (Ed.)
  4. Diversity is an important principle in data selection and summarization, facility location, and recommendation systems. Our work focuses on maximizing diversity in data selection, while offering fairness guarantees. In particular, we offer the first study that augments the Max-Min diversification objective with fairness constraints. More specifically, given a universe 𝒰 of n elements that can be partitioned into m disjoint groups, we aim to retrieve a k-sized subset that maximizes the pairwise minimum distance within the set (diversity) and contains a pre-specified k_i number of elements from each group i (fairness). We show that this problem is NP-complete even in metric spaces, and we propose three novel algorithms, linear in n, that provide strong theoretical approximation guarantees for different values of m and k. Finally, we extend our algorithms and analysis to the case where groups can be overlapping. 
    more » « less