Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We introduce a new design method to tailor the physical structure of a powered ankle-foot orthosis to the wearer’s leg morphology and improve fit. We present a digital modeling and fabrication workflow that combines scan-based design, parametric configurable modeling, and additive manufacturing (AM) to enable the efficient creation of personalized ankle-foot orthoses with minimal lead-time and explicit inputs. The workflow consists of an initial one-time generic modeling step to generate a parameterized design that can be rapidly configured to customizable shapes and sizes using a design table. This step is then followed by a wearer-specific personalization step that consists of performing a 3D scan of the wearer’s leg, extracting key parameters of the wearer’s leg morphology, generating a personalized design using the configurable parametric design, and digital fabrication of the individualized ankle-foot orthosis using additive manufacturing. The paper builds upon the design of the Stevens Ankle-Foot Electromechanical (SAFE) orthosis presented in prior work and introduces a new, individualized structural design (SAFE II orthosis) that is modeled and fabricated using the presented digital workflow. The workflow is demonstrated by designing a personalized ankle-foot orthosis for an individual based on 3D scan data and printing a personalized design to perform preliminary fit testing. Implications of the presented methodology for the design and fabrication of future personalized powered orthoses are discussed, along with avenues for future work.more » « less
-
null (Ed.)The primary goal of an assist-as-needed (AAN) controller is to maximize subjects' active participation during motor training tasks while allowing moderate tracking errors to encourage human learning of a target movement. Impedance control is typically employed by AAN controllers to create a compliant force-field around the desired motion trajectory. To accommodate different individuals with varying motor abilities, most of the existing AAN controllers require extensive manual tuning of the control parameters, resulting in a tedious and time-consuming process. In this paper, we propose a reinforcement learning AAN controller that can autonomously reshape the force-field in real-time based on subjects' training performances. The use of action-dependent heuristic dynamic programming enables a model-free implementation of the proposed controller. To experimentally validate the controller, a group of healthy individuals participated in a gait training session wherein they were asked to learn a modified gait pattern with the help of a powered ankle-foot orthosis. Results indicated the potential of the proposed control strategy for robot-assisted gait training.more » « less
An official website of the United States government
