Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 12, 2026
-
Conventional data-driven methods for predicting the seismic response of structures often require extensive data and computational resources. To address these challenges, a novel deep learning framework that can efficiently and accurately predict the structural seismic responses is proposed. The proposed framework overcomes the limitations of the conventional data-driven methods, by utilizing transfer learning based on the most relevant knowledge determined via the unsupervised learning technique. The framework leverages the seismic information history database to identify the most similar previous earthquake, and subsequently transfers the corresponding knowledge from the Structural Seismic Response network (SSR net) to predict structural responses caused by a new earthquake. This innovative method significantly reduces the need for extensive data collection and provides efficient predictions. Case studies demonstrate the framework’s ability to predict seismic structural responses without extensive training or data collection. The framework can reliably capture the complex nonlinear dynamics of structures under seismic loads and offer significant potential for advancing seismic fragility analyses and reliability assessments. Future research will focus on expanding the framework’s applicability to various structural types and further refining its prediction capabilities.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Machine learning (ML)-based data-driven methods have promoted the progress of modeling in many engineering domains. These methods can achieve high prediction and generalization performance for large, high-quality datasets. However, ML methods can yield biased predictions if the observed data (i.e., response variable y) are corrupted by outliers. This paper addresses this problem with a novel, robust ML approach that is formulated as an optimization problem by coupling locally weighted least-squares support vector machines for regression (LWLS-SVMR) with one weight function. The weight is a function of residuals and allows for iteration within the proposed approach, significantly reducing the negative interference of outliers. A new efficient hybrid algorithm is developed to solve the optimization problem. The proposed approach is assessed and validated by comparison with relevant ML approaches on both one-dimensional simulated datasets corrupted by various outliers and multi-dimensional real-world engineering datasets, including datasets used for predicting the lateral strength of reinforced concrete (RC) columns, the fuel consumption of automobiles, the rising time of a servomechanism, and dielectric breakdown strength. Finally, the proposed method is applied to produce a data-driven solver for computational mechanics with a nonlinear material dataset corrupted by outliers. The results all show that the proposed method is robust against non-extreme and extreme outliers and improves the predictive performance necessary to solve various engineering problems.more » « less
-
Existing physics-based modeling approaches do not have a good compromise between performance and computational efficiency in predicting the seismic response of reinforced concrete (RC) frames, where high-fidelity models (e.g., fiber-based modeling method) have reasonable predictive performance but are computationally demanding, while more simplified models (e.g., shear building model) are the opposite. This paper proposes a novel artificial intelligence (AI)-enhanced computational method for seismic response prediction of RC frames which can remedy these problems. The proposed AI-enhanced method incorporates an AI technique with a shear building model, where the AI technique can directly utilize the real-world experimental data of RC columns to determine the lateral stiffness of each column in the target RC frame while the structural stiffness matrix is efficiently formulated via the shear building model. Therefore, this scheme can enhance prediction accuracy due to the use of real-world data while maintaining high computational efficiency due to the incorporation of the shear building model. Two data-driven seismic response solvers are developed to implement the proposed approach based on a database including 272 RC column specimens. Numerical results demonstrate that compared to the experimental data, the proposed method outperforms the fiber-based modeling approach in both prediction capability and computational efficiency and is a promising tool for accurate and efficient seismic response prediction of structural systems.more » « less
-
Lateral stiffness of structural components, such as reinforced concrete (RC) columns, plays an important role in resisting the lateral earthquake loads. The lateral stiffness relates the lateral force to the lateral deformation, having a critical effect on the accuracy of the lateral seismic response predictions. The classical methods (e.g. fiber beam–column model) to estimate the lateral stiffness require calculations from section, element, and structural levels, which is time-consuming. Moreover, the shear deformation and bond-slip effect may also need to be included to more accurately calculate the lateral stiffness, which further increases the modeling difficulties and the computational cost. To reduce the computational time and enhance the accuracy of the predictions, this article proposes a novel data-driven method to predict the laterally seismic response based on the estimated lateral stiffness. The proposed method integrates the machine learning (ML) approach with the hysteretic model, where ML is used to compute the parameters that govern the nonlinear properties of the lateral response of target structural components directly from a training set composed of experimental data (i.e. data-driven procedure) and the hysteretic model is used to directly output the lateral stiffness based on the computed parameters and then to perform the seismic analysis. We apply the proposed method to predict the lateral seismic response of various types of RC columns subjected to cyclic loading and ground motions. We present the detailed model formulation for the application, including the developments of a modified hysteretic model, a hybrid optimization algorithm, and two data-driven seismic response solvers. The results predicted by the proposed method are compared with those obtained by classical methods with the experimental data serving as the ground truth, showing that the proposed method significantly outperforms the classical methods in both generalized prediction capabilities and computational efficiency.more » « less
An official website of the United States government
