skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1944496

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2026
  2. Free, publicly-accessible full text available January 1, 2026
  3. Ceramic materials provide outstanding chemical and structural stability at high temperatures and in hostile environments but are susceptible to catastrophic fracture that severely limits their applicability. Traditional approaches to partially overcome this limitation rely on activating toughening mechanisms during crack growth to postpone fracture. Here, we demonstrate a more potent toughening mechanism that involves an intriguing possibility of healing the cracks as they form, even at room temperature, in an atomically layered ternary carbide. Crystals of this class of ceramic materials readily fracture along weakly bonded crystallographic planes. However, the onset of an abstruse mode of deformation, referred to as kinking in these materials, induces large crystallographic rotations and plastic deformation that physically heal the cracks. This implies that the toughness of numerous other layered ceramic materials, whose broader applications have been limited by their susceptibility to catastrophic fracture, can also be enhanced by microstructural engineering to promote kinking and crack-healing. 
    more » « less
  4. null (Ed.)