skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1944597

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Soft robots are distinguished by their flexibility and adaptability, allowing them to perform nearly impossible tasks for rigid robots. However, controlling their behavior is challenging due to their nonlinear material response and infinite degrees of freedom. A potential solution to these challenges is to discretize their infinite‐dimensional configuration space into a finite but sufficiently large number of functional modes with programmed dynamics. A strategy is presented for co‐designing the desired tasks and morphology of pneumatically actuated soft robots with multiple encoded stable states and dynamic responses. This approach introduces a general method to capture the soft robots' response using an energy‐based analytical model, the parameters of which are obtained using Recursive Feature Elimination. The resulting lumped‐parameter model enables the inverse co‐design of the robot's morphology and planned tasks by embodying specific dynamics upon actuation. This approach's ability to explore the configuration space is shown by co‐designing kinematics with optimized stiffnesses and time responses to obtain robots capable of classifying the size and weight of objects and displaying adaptable locomotion with minimal feedback control. This strategy offers a framework for simplifying the control of soft robots by exploiting the mechanics of multistable structures and embodying mechanical intelligence into soft material systems. 
    more » « less
  2. Free, publicly-accessible full text available May 1, 2026
  3. Bistable composite laminates exhibit a high degree of shape change and stiffness variation between their stable configurations, making them suitable for applications in morphing structures and energy harvesting. However, integration of these laminates into larger systems often imposes different boundary conditions, which can eliminate one of their stable states. Moreover, clamping one or more edges of a rectangular bistable laminate causes a drastic change in its strain energy landscape, indicating a strong interplay between the laminate geometry, boundary conditions, and prestress. In this work, we investigate the effect of clamping on the bistability of rectangular prestressed laminates. An analytical approach is proposed to examine the deflection decay imposed by the boundary condition along the laminate’s length. Different prestress values, laminate dimensions, and material properties are analyzed to establish their effect on the curvature change due to the localized clamp effect. A length criterion is determined to guarantee bistability after clamping the bistable laminate, suggesting the need to utilize complementary techniques to retain the bistable behavior for orthotropic prestressed laminates. Different strategies to counter the clamped edge effect and thereby retain the bistability of these types of laminates are then examined. The proposed analytical model is expanded to consider multi-section composite laminates, showing the role of the symmetric regions in bistability retention. Finally, the results from the model are validated against experiments. 
    more » « less