Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Cosmic rays (CRs) play a pivotal role in shaping the thermal and dynamical properties of astrophysical environments, such as galaxies and galaxy clusters. Recent observations suggest a stronger confinement of CRs in certain astrophysical systems than predicted by current CR-transport theories. Here, we show that the incorporation of microscale physics into CR-transport models can account for this enhanced CR confinement. We develop a theoretical description of the effect of magnetic microscale fluctuations originating from the mirror instability on macroscopic CR diffusion. We confirm our theory with large-dynamical-range simulations of CR transport in the intracluster medium (ICM) of galaxy clusters and kinetic simulations of CR transport in micromirror fields. We conclude that sub-teraelectronvolt CR confinement in the ICM is far more effective than previously anticipated on the basis of Galactic-transport extrapolations. The transformative impact of micromirrors on CR diffusion provides insights into how microphysics can reciprocally affect macroscopic dynamics and observable structures across a range of astrophysical scales.more » « lessFree, publicly-accessible full text available March 1, 2026
-
ABSTRACT Radio bubbles, ubiquitous features of the intracluster medium around active galactic nuclei, are known to rise buoyantly for multiple scale heights through the intracluster medium (ICM). It is an open question how the bubbles can retain their high-energy cosmic-ray content over such distances. We propose that the enhanced scattering of cosmic rays due to micromirrors generated in the ICM is a viable mechanism for confining the cosmic rays within bubbles and can qualitatively reproduce their morphology. We discuss the observational implications of such a model of cosmic-ray confinement.more » « less
-
Abstract We report on a first-principles numerical and theoretical study of plasma dynamo in a fully kinetic framework. By applying an external mechanical force to an initially unmagnetized plasma, we develop a self-consistent treatment of the generation of “seed” magnetic fields, the formation of turbulence, and the inductive amplification of fields by the fluctuation dynamo. Driven large-scale motions in an unmagnetized, weakly collisional plasma are subject to strong phase mixing, which leads to the development of thermal pressure anisotropy. This anisotropy triggers the Weibel instability, which produces filamentary “seed” magnetic fields on plasma-kinetic scales. The plasma is thereby magnetized, enabling efficient stretching and folding of the fields by the plasma motions and the development of Larmor-scale kinetic instabilities such as the firehose and mirror. The scattering of particles off the associated microscale magnetic fluctuations provides an effective viscosity, regulating the field morphology and turbulence. During this process, the seed field is further amplified by the fluctuation dynamo until energy equipartition with the turbulent flow is reached. By demonstrating that equipartition magnetic fields can be generated from an initially unmagnetized plasma through large-scale turbulent flows, this work has important implications for the origin and amplification of magnetic fields in the intracluster and intergalactic mediums.more » « less
-
ABSTRACT The intracluster medium of galaxy clusters is an extremely hot and diffuse, nearly collisionless plasma, which hosts dynamically important magnetic fields of ∼μG strength. Seed magnetic fields of much weaker strength of astrophysical or primordial origin can be present in the intracluster medium. In collisional plasmas, which can be approximated in the magnetohydrodynamical (MHD) limit, the turbulent dynamo mechanism can amplify weak seed fields to strong dynamical levels efficiently by converting turbulent kinetic energy into magnetic energy. However, the viability of this mechanism in weakly collisional or completely collisionless plasma is much less understood. In this study, we explore the properties of the collisionless turbulent dynamo using three-dimensional hybrid-kinetic particle-in-cell simulations. We explore the properties of the collisionless turbulent dynamo in the kinematic regime for different values of the magnetic Reynolds number, Rm, initial magnetic-to-kinetic energy ratio, (Emag/Ekin)i, and initial Larmor ratio, (rLarmor/Lbox)i, i.e. the ratio of the Larmor radius to the size of the turbulent system. We find that in the ‘un-magnetized’ regime, (rLarmor/Lbox)i > 1, the critical magnetic Reynolds number for the dynamo action Rmcrit ≈ 107 ± 3. In the ‘magnetized’ regime, (rLarmor/Lbox)i ≲ 1, we find a marginally higher Rmcrit = 124 ± 8. We find that the growth rate of the magnetic energy does not depend on the strength of the seed magnetic field when the initial magnetization is fixed. We also study the distribution and evolution of the pressure anisotropy in the collisionless plasma and compare our results with the MHD turbulent dynamo.more » « less
-
ABSTRACT The nature of cosmic ray (CR) transport in the Milky Way remains elusive. The predictions of current microphysical CR transport models in magnetohydrodynamic (MHD) turbulence are drastically different from what is observed. These models usually focus on MHD turbulence with a strong guide field and ignore the impact of turbulent intermittency on particle propagation. This motivates our studying the alternative regime of large-amplitude turbulence with δB/B0 ≫ 1, in which intermittent small-scale magnetic field reversals are ubiquitous. We study particle transport in such turbulence by integrating trajectories in stationary snapshots. To quantify spatial diffusion, we use a set-up with continuous particle injection and escape, which we term the turbulent leaky box. We find that particle transport is very different from the strong guide-field case. Low-energy particles are better confined than high-energy particles, despite less efficient pitch-angle isotropization at small energies. In the limit of weak guide field, energy-dependent confinement is driven by the energy-dependent (in)ability to follow reversing magnetic field lines exactly and by the scattering in regions of ‘resonant curvature’, where the field line bends on a scale that is of the order of the local particle gyro-radius. We derive a heuristic model of particle transport in magnetic folds that approximately reproduces the energy dependence of transport found numerically. We speculate that CR propagation in the Galaxy is regulated by the intermittent field reversals highlighted here and discuss the implications of our findings for CR transport in the Milky Way.more » « less
-
The magnetohydrodynamic (MHD) equations, as a collisional fluid model that remains in local thermodynamic equilibrium (LTE), have long been used to describe turbulence in myriad space and astrophysical plasmas. Yet, the vast majority of these plasmas, from the solar wind to the intracluster medium (ICM) of galaxy clusters, are only weakly collisional at best, meaning that significant deviations from LTE are not only possible but common. Recent studies have demonstrated that the kinetic physics inherent to this weakly collisional regime can fundamentally transform the evolution of such plasmas across a wide range of scales. Here, we explore the consequences of pressure anisotropy and Larmor-scale instabilities for collisionless,$$\beta \gg 1$$, turbulence, focusing on the role of a self-organizational effect known as ‘magneto-immutability’. We describe this self-organization analytically through a high-$$\beta$$, reduced ordering of the Chew–Goldberger–Low-MHD (CGL-MHD) equations, finding that it is a robust inertial-range effect that dynamically suppresses magnetic-field-strength fluctuations, anisotropic-pressure stresses and dissipation due to heat fluxes. As a result, the turbulent cascade of Alfvénic fluctuations continues below the putative viscous scale to form a robust, nearly conservative, MHD-like inertial range. These findings are confirmed numerically via Landau-fluid CGL-MHD turbulence simulations that employ a collisional closure to mimic the effects of microinstabilities. We find that microinstabilities occupy a small ($${\sim }5\,\%$$) volume-filling fraction of the plasma, even when the pressure anisotropy is driven strongly towards its instability thresholds. We discuss these results in the context of recent predictions for ion-vs-electron heating in low-luminosity accretion flows and observations implying suppressed viscosity in ICM turbulence.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Pressure anisotropy can strongly influence the dynamics of weakly collisional, high-beta plasmas, but its effects are missed by standard magnetohydrodynamics (MHD). Small changes to the magnetic-field strength generate large pressure-anisotropy forces, heating the plasma, driving instabilities and rearranging flows, even on scales far above the particles’ gyroscales where kinetic effects are traditionally considered most important. Here, we study the influence of pressure anisotropy on turbulent plasmas threaded by a mean magnetic field (Alfvénic turbulence). Extending previous results that were concerned with Braginskii MHD, we consider a wide range of regimes and parameters using a simplified fluid model based on drift kinetics with heat fluxes calculated using a Landau-fluid closure. We show that viscous (pressure-anisotropy) heating dissipates between a quarter (in collisionless regimes) and half (in collisional regimes) of the turbulent-cascade power injected at large scales; this does not depend strongly on either plasma beta or the ion-to-electron temperature ratio. This will in turn influence the plasma's thermodynamics by regulating energy partition between different dissipation channels (e.g. electron and ion heat). Due to the pressure anisotropy's rapid dynamic feedback onto the flows that create it – an effect we term ‘magneto-immutability’ – the viscous heating is confined to a narrow range of scales near the forcing scale, supporting a nearly conservative, MHD-like inertial-range cascade, via which the rest of the energy is transferred to small scales. Despite the simplified model, our results – including the viscous heating rate, distributions and turbulent spectra – compare favourably with recent hybrid-kinetic simulations. This is promising for the more general use of extended-fluid (or even MHD) approaches to model weakly collisional plasmas such as the intracluster medium, hot accretion flows and the solar wind.more » « less
-
With the support of hybrid-kinetic simulations and analytic theory, we describe the nonlinear behaviour of long-wavelength non-propagating (NP) modes and fast magnetosonic waves in high- $$\beta$$ collisionless plasmas, with particular attention to their excitation of and reaction to kinetic micro-instabilities. The perpendicularly pressure balanced polarization of NP modes produces an excess of perpendicular pressure over parallel pressure in regions where the plasma $$\beta$$ is increased. For mode amplitudes $$|\delta B/B_0| \gtrsim 0.3$$ , this excess excites the mirror instability. Particle scattering off these micro-scale mirrors frustrates the nonlinear saturation of transit-time damping, ensuring that large-amplitude NP modes continue their decay to small amplitudes. At asymptotically large wavelengths, we predict that the mirror-induced scattering will be large enough to interrupt transit-time damping entirely, isotropizing the pressure perturbations and morphing the collisionless NP mode into the magnetohydrodynamic (MHD) entropy mode. In fast waves, a fluctuating pressure anisotropy drives both mirror and firehose instabilities when the wave amplitude satisfies $$|\delta B/B_0| \gtrsim 2\beta ^{-1}$$ . The induced particle scattering leads to delayed shock formation and MHD-like wave dynamics. Taken alongside prior work on self-interrupting Alfvén waves and self-sustaining ion-acoustic waves, our results establish a foundation for new theories of electromagnetic turbulence in low-collisionality, high- $$\beta$$ plasmas such as the intracluster medium, radiatively inefficient accretion flows and the near-Earth solar wind.more » « less
-
We study within a fully kinetic framework the generation of “seed” magnetic fields through the Weibel instability, driven in an initially unmagnetized plasma by a large-scale shear force. We develop an analytical model that describes the development of thermal pressure anisotropy via phase mixing, the ensuing exponential growth of magnetic fields in the linear Weibel stage, and the saturation of the Weibel instability when the seed magnetic fields become strong enough to instigate gyromotion of particles and thereby inhibit their free-streaming. The predicted scaling dependencies of the saturated fields on key parameters (e.g., ratio of system scale to electron skin depth and forcing amplitude) are confirmed by two-dimensional and three-dimensional particle-in-cell simulations of an electron–positron plasma. This work demonstrates the spontaneous magnetization of a collisionless plasma through large-scale motions as simple as a shear flow and therefore has important implications for magnetogenesis in dilute astrophysical systems.more » « less
An official website of the United States government
