skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1944993

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Actor-critic style two-time-scale algorithms are one of the most popular methods in reinforcement learning, and have seen great empirical success. However, their performance is not completely understood theoretically. In this paper, we characterize the global convergence of an online natural actor-critic algorithm in the tabular setting using a single trajectory of samples. Our analysis applies to very general settings, as we only assume ergodicity of the underlying Markov decision process. In order to ensure enough exploration, we employ an ϵ-greedy sampling of the trajectory. For a fixed and small enough exploration parameter ϵ, we show that the two-time-scale natural actor-critic algorithm has a rate of convergence of O~(1/T1/4), where T is the number of samples, and this leads to a sample complexity of O~(1/δ8) samples to find a policy that is within an error of δ from the global optimum. Moreover, by carefully decreasing the exploration parameter ϵ as the iterations proceed, we present an improved sample complexity of O~(1/δ6) for convergence to the global optimum. 
    more » « less