Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present an alternative and, for the purpose of non-crystalline materials design, a more suitable description of covalent and ionic glassy solids as statistical ensembles of crystalline local minima on the potential energy surface. Motivated by the concept of partially broken ergodicity, we analytically formulate the set of approximations under which the structural features of ergodic systems such as the radial distribution function (RDF) and powder X-ray diffraction (XRD) intensity can be rigorously expressed as statistical ensemble averages over different local minima. Validation is carried out by evaluating these ensemble averages for elemental Si and SiO2over the local minima obtained through the first-principles random structure sampling that we performed using relatively small simulation cells, thereby restricting the sampling to a set of predominantly crystalline structures. The comparison with XRD and RDF from experiments (amorphous silicon) and molecular dynamics simulations (glassy SiO2) shows excellent agreement, thus supporting the ensemble picture of glasses and opening the door to fully predictive description without the need for experimental inputs.more » « less
-
We present an approach to approximating static properties of glasses without experimental inputs rooted in the first-principles random structure sampling. In our approach, the glassy system is represented by a collection (composite) of periodic, small-cell (few 10 s of atoms) local minima on the potential energy surface. These are obtained by generating a set of periodic structures with random lattice parameters and random atomic positions, which are then relaxed to their closest local minima on the potential energy surface using the first-principles methods. Using vitreous SiO2 as an example, we illustrate and discuss how well various atomic and electronic structure properties calculated as averages over the set of such local minima reproduce experimental data. The practical benefit of our approach, which can be rigorously thought of as representing an infinitely quickly quenched liquid, is in that it transfers the computational burden to linear scaling and easy to converge averages of properties computed on small-cell structures, rather than simulation cells with 100 s if not 1000 s of atoms while retaining a good overall predictive accuracy. Because of this, it enables the future use of high-cost/high-accuracy electronic structure methods, thereby bringing the modeling of glasses and amorphous phases closer to the state of modeling of crystalline solids.more » « less
-
Free, publicly-accessible full text available February 5, 2026
-
Free, publicly-accessible full text available December 1, 2025
-
We investigate electronic structure and dopability of an ultrawide bandgap (UWBG) AlScO3 perovskite, a known high-pressure and long-lived metastable oxide. From first-principles electronic structure calculations, HSE06(+G0W0), we find this material to exhibit an indirect bandgap of around 8.0 eV. Defect calculations point to cation and oxygen vacancies as the dominant intrinsic point defects limiting extrinsic doping. While acceptor behaving Al and Sc vacancies prevent n-type doping, oxygen vacancies permit the Fermi energy to reach ∼0.3 eV above the valence band maximum, rendering AlScO3 p-type dopable. Furthermore, we find that both Mg and Zn could serve as extrinsic p-type dopants. Specifically, Mg is predicted to have achievable net acceptor concentrations of ∼1017 cm−3 with ionization energy of bound small hole polarons of ∼0.49 eV and free ones below 0.1 eV. These values place AlScO3 among the UWBG oxides with lowest bound small hole polaron ionization energies, which, as we find, is likely due to large ionic dielectric constant that correlates well with low hole polaron ionization energies across various UWBG oxides.more » « less
An official website of the United States government
