skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1945212

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We study Schubert polynomials using geometry of infinite-dimensional flag varieties and degeneracy loci. Applications include Graham-positivity of coefficients appearing in equivariant coproduct formulas and expansions of back-stable and enriched Schubert polynomials. We also construct an embedding of the type C flag variety and study the corresponding pullback map on (equivariant) cohomology rings. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Abstract We give explicit presentations of the integral equivariant cohomology of the affine Grassmannians and flag varieties in type A, arising from their natural embeddings in the corresponding infinite (Sato) Grassmannian and flag variety. These presentations are compared with results obtained by Lam and Shimozono, for rational equivariant cohomology of the affine Grassmannian, and by Larson, for the integral cohomology of the moduli stack of vector bundles on. 
    more » « less
  3. Abstract We introduce the ‐Catalan measures, a sequence of piece‐wise polynomial measures on . These measures are defined in terms of suitable area, dinv, and bounce statistics on continuous families of paths in the plane, and have many combinatorial similarities to the ‐Catalan numbers. Our main result realizes the ‐Catalan measures as a limit of higher ‐Catalan numbers as . We also give a geometric interpretation of the ‐Catalan measures. They are the Duistermaat–Heckman measures of the punctual Hilbert schemes parametrizing subschemes of supported at the origin. 
    more » « less
  4. Abstract We compute the Euler characteristic of the structure sheaf of the Brill–Noether locus of linear series with special vanishing at up to two marked points. When the Brill–Noether number $$\rho $$ is zero, we recover the Castelnuovo formula for the number of special linear series on a general curve; when $$\rho =1$$, we recover the formulas of Eisenbud-Harris, Pirola, and Chan–Martín–Pflueger–Teixidor for the arithmetic genus of a Brill–Noether curve of special divisors. These computations are obtained as applications of a new determinantal formula for the $$K$$-theory class of certain degeneracy loci. Our degeneracy locus formula also specializes to new determinantal expressions for the double Grothendieck polynomials corresponding to 321-avoiding permutations and gives double versions of the flagged skew Grothendieck polynomials recently introduced by Matsumura. Our result extends the formula of Billey–Jockusch–Stanley expressing Schubert polynomials for 321-avoiding permutations as generating functions for flagged skew tableaux. 
    more » « less