skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1945212

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We introduce the ‐Catalan measures, a sequence of piece‐wise polynomial measures on . These measures are defined in terms of suitable area, dinv, and bounce statistics on continuous families of paths in the plane, and have many combinatorial similarities to the ‐Catalan numbers. Our main result realizes the ‐Catalan measures as a limit of higher ‐Catalan numbers as . We also give a geometric interpretation of the ‐Catalan measures. They are the Duistermaat–Heckman measures of the punctual Hilbert schemes parametrizing subschemes of supported at the origin.

     
    more » « less
    Free, publicly-accessible full text available March 1, 2025
  2. Abstract

    We give explicit presentations of the integral equivariant cohomology of the affine Grassmannians and flag varieties in type A, arising from their natural embeddings in the corresponding infinite (Sato) Grassmannian and flag variety. These presentations are compared with results obtained by Lam and Shimozono, for rational equivariant cohomology of the affine Grassmannian, and by Larson, for the integral cohomology of the moduli stack of vector bundles on.

     
    more » « less
    Free, publicly-accessible full text available February 8, 2025
  3. Free, publicly-accessible full text available January 1, 2025
  4. Free, publicly-accessible full text available December 1, 2024
  5. Free, publicly-accessible full text available October 1, 2024
  6. Abstract We compute the Euler characteristic of the structure sheaf of the Brill–Noether locus of linear series with special vanishing at up to two marked points. When the Brill–Noether number $\rho $ is zero, we recover the Castelnuovo formula for the number of special linear series on a general curve; when $\rho =1$, we recover the formulas of Eisenbud-Harris, Pirola, and Chan–Martín–Pflueger–Teixidor for the arithmetic genus of a Brill–Noether curve of special divisors. These computations are obtained as applications of a new determinantal formula for the $K$-theory class of certain degeneracy loci. Our degeneracy locus formula also specializes to new determinantal expressions for the double Grothendieck polynomials corresponding to 321-avoiding permutations and gives double versions of the flagged skew Grothendieck polynomials recently introduced by Matsumura. Our result extends the formula of Billey–Jockusch–Stanley expressing Schubert polynomials for 321-avoiding permutations as generating functions for flagged skew tableaux. 
    more » « less