Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We analyse the results of direct numerical simulations of rotating convection in spherical shell geometries with stress-free boundary conditions, which develop strong zonal flows. Both the Ekman number and the Rayleigh number are varied. We find that the asymptotic theory for rapidly rotating convection can be used to predict the Ekman number dependence of each term in the governing equations, along with the convective flow speeds and the dominant length scales. Using a balance between the Reynolds stress and the viscous stress, together with the asymptotic scaling for the convective velocity, we derive an asymptotic prediction for the scaling behaviour of the zonal flow with respect to the Ekman number, which is supported by the numerical simulations. We do not find evidence of distinct asymptotic scalings for the buoyancy and viscous forces and, in agreement with previous results from asymptotic plane layer models, we find that the ratio of the viscous force to the buoyancy force increases with Rayleigh number. Thus, viscosity remains non-negligible and we do not observe a trend towards a diffusion-free scaling behaviour within the rapidly rotating regime.more » « less
-
Dynamos driven by rotating convection in the plane layer geometry are investigated numerically for a range of Ekman number ( $$E$$ ), magnetic Prandtl number ( $Pm$ ) and Rayleigh number ( $Ra$ ). The primary purpose of the investigation is to compare results of the simulations with previously developed asymptotic theory that is applicable in the limit of rapid rotation. We find that all of the simulations are in the quasi-geostrophic regime in which the Coriolis and pressure gradient forces are approximately balanced at leading order, whereas all other forces, including the Lorentz force, act as perturbations. Agreement between simulation output and asymptotic scalings for the energetics, flow speeds, magnetic field amplitude and length scales is found. The transition from large-scale dynamos to small-scale dynamos is well described by the magnetic Reynolds number based on the small convective length scale, $$\widetilde {Rm}$$ , with large-scale dynamos preferred when $$\widetilde {Rm} \lesssim O(1)$$ . The magnitude of the large-scale magnetic field is observed to saturate and become approximately constant with increasing Rayleigh number. Energy spectra show that all length scales present in the flow field and the small-scale magnetic field are consistent with a scaling of $$E^{1/3}$$ , even in the turbulent regime. For a fixed value of $$E$$ , we find that the viscous dissipation length scale is approximately constant over a broad range of $Ra$ ; the ohmic dissipation length scale is approximately constant within the large-scale dynamo regime, but transitions to a $$\widetilde {Rm}^{-1/2}$$ scaling in the small-scale dynamo regime.more » « less
-
ABSTRACT Numerical simulations are used to investigate large-scale (mean) magnetic field generation in rotating spherical dynamos. Beyond a certain threshold, we find that the magnitude of the mean magnetic field becomes nearly independent of the system rotation rate and buoyancy forcing. The analysis suggests that this saturation arises from the Malkus-Proctor mechanism in which a Coriolis-Lorentz force balance is achieved in the zonal component of the mean momentum equation. When based on the large-scale magnetic field, the Elsasser number is near unity in the saturated regime. The results show that the large and small magnetic field saturate via distinct mechanisms in rapidly rotating dynamos, and that only the axisymmetric component of the magnetic field appears to follow an Elsasser number scaling.more » « less
-
Summary The large-scale dynamics of convection-driven dynamos in a spherical shell, as relevant to the geodynamo, is analyzed with numerical simulation data and asymptotic theory. An attempt is made to determine the asymptotic size (with the small parameter being the Ekman number, Ek) of the forces, and the associated velocity and magnetic fields. In agreement with previous work, the leading order mean force balance is shown to be thermal wind (Coriolis, pressure gradient, buoyancy) in the meridional plane and Coriolis-Lorentz in the zonal direction. The Lorentz force is observed to be weaker than the mean buoyancy force across a range of Ek and thermal forcing; the relative difference in these forces appears to be O(Ek1/6) within the parameter space investigated. We find that the thermal wind balance requires that the mean zonal velocity scales as O(Ek−1/3), whereas the meridional circulation is asymptotically smaller by a factor of O(Ek1/6). The mean temperature equation shows a balance between thermal diffusion and the divergence of the convective heat flux, indicating the presence of a mean temperature length scale of size O(Ek1/6). Neither the mean nor the fluctuating magnetic field show a strong dependence on the Ekman number, though the simulation data shows evidence of a mean magnetic field length scale of size O(Ek1/6). A consequence of the asymptotic ordering of the forces is that Taylor’s constraint is satisfied to accuracy O(Ek1/6), despite the absence of a leading-order magnetostrophic balance. Further consequences of the force balance are discussed with respect to the large-scale flows thought to be important for the geodynamo.more » « less
An official website of the United States government
