skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1945471

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> In this study, we explore the real-time dynamics of the chiral magnetic effect (CME) at a finite temperature in the (1+1)-dimensional QED, the massive Schwinger model. By introducing a chiral chemical potentialμ5through a quench process, we drive the system out of equilibrium and analyze the induced vector currents and their evolution over time. The Hamiltonian is modified to include the time-dependent chiral chemical potential, thus allowing the investigation of the CME within a quantum computing framework. We employ the quantum imaginary time evolution (QITE) algorithm to study the thermal states, and utilize the Suzuki-Trotter decomposition for the real-time evolution. This study provides insights into the quantum simulation capabilities for modeling the CME and offers a pathway for studying chiral dynamics in low-dimensional quantum field theories. 
    more » « less
  2. A<sc>bstract</sc> We compute the differential cross-section for direct quarkonium production accompanied by a gluon in high-energy deep inelastic scattering (DIS) at small-x. We employ the Non-Relativistic QCD factorization framework, focusing on theS-wave contribution to the formation of the quarkonium, and including both color singlet and octet contributions. Our short distance coefficients for the production of the heavy quark pair are obtained within the Color Glass Condensate effective field theory. Our results pave the way towards the next-to-leading order computation of direct quarkonium in DIS, as well as the study of azimuthal correlations of direct quarkonium and jet. 
    more » « less
  3. A<sc>bstract</sc> We apply the joint threshold and transverse momentum dependent (TMD) factorization theorem to introduce new threshold-TMD distribution functions, including threshold-TMD parton distribution functions (PDFs) and fragmentation functions (FFs). We apply Soft-Collinear Effective Theory and renormalization group methods to carry out QCD evolution for both threshold-TMD PDFs and FFs. We show the universality of threshold-TMD functions among three standard processes, i.e. the Drell-Yan production inppcollisions, semi-inclusive deep-inelastic scattering and back-to-back two hadron production ine+ecollisions. In the end, we present the numerical predictions for different threshold-TMD functions and also transverse momentum distributions atpp,ep, ande+ecollisions. 
    more » « less
  4. A<sc>bstract</sc> We study the azimuthal angle dependence of the energy-energy correlators$$\langle \mathcal{E}\left({\widehat{n}}_{1}\right)\mathcal{E}\left({\widehat{n}}_{2}\right)\rangle $$in the back-to-back region fore+eannihilation and deep inelastic scattering (DIS) processes with general polarization of the proton beam. We demonstrate that the polarization information of the beam and the underlying partons from the hard scattering is propagated into the azimuthal angle dependence of the energy-energy correlators. In the process, we define the Collins-type EEC jet functions and introduce a new EEC observable using the lab-frame angles in the DIS process. Furthermore, we extend our formalism to explore the two-point energy correlation between hadrons with different quantum numbers$${\mathbb{S}}_{i}$$in the back-to-back limit$$\langle {\mathcal{E}}_{{\mathbb{S}}_{1}}\left({\widehat{n}}_{1}\right){\mathcal{E}}_{{\mathbb{S}}_{2}}\left({\widehat{n}}_{2}\right)\rangle $$. We find that in the Operator Product Expansion (OPE) region the nonperturbative information is entirely encapsulated by a single number. Using our formalism, we present several phenomenological studies that showcase how energy correlators can be used to probe transverse momentum dependent structures. 
    more » « less
  5. A<sc>bstract</sc> We study the azimuthal angular decorrelations of dijet production in both proton-proton (pp) and proton-nucleus (pA) collisions. By utilizing soft-collinear effective theory, we establish the factorization and resummation formalism at the next-to-leading logarithmic accuracy for the azimuthal angular decorrelations in the back-to-back limit in pp collisions. We propose an approach where the nuclear modifications to dijet production in pA collisions are accounted for in the nuclear modified transverse momentum dependent parton distribution functions (nTMDPDFs), which contain both collinear and transverse dynamics. This approach naturally generalizes the well-established formalism related to the nuclear modified collinear parton distribution functions (nPDFs). We demonstrate strong consistency between our methodology and the CMS measurements in both pp and pA collisions, and make predictions for dijet production in the forward rapidity region in pA collisions at LHC kinematics and for mid-rapidity kinematics at sPHENIX. Throughout this paper, we focus on the application of this formalism to a simultaneous fit to both collinear and transverse momentum dependent contributions to the transverse momentum dependent distributions. 
    more » « less
  6. A<sc>bstract</sc> In this work, we present a complete theoretical framework for analyzing the distribution of polarized hadrons within jets, with and without measuring the transverse momentum relative to the standard jet axis. Using soft-collinear effective theory (SCET), we derive the factorization and provide the theoretical calculation of both semi-inclusive and exclusive fragmenting jet functions (FJFs) under longitudinal and transverse polarization. With the polarized FJFs, one gains access to a variety of new observables that can be used for extracting both collinear and transverse momentum dependent parton distribution functions (PDFs) and fragmentation functions (FFs). As examples, we provide numerical results for the spin asymmetry$$ {A}_{TU,T}^{\cos \left({\phi}_S-{\hat{\phi}}_{S_h}\right)} $$ A TU , T cos ϕ S ϕ ̂ S h from polarized semi-inclusive hadron-in-jet production in polarizedppcollisions at RHIC kinematics, where a transversely polarized quark would lead to the transverse spin of the final-state hadron inside the jet and is thus sensitive to the transversity fragmentation functions. Similarly, another spin asymmetry,$$ {A}_{TU,L}^{\cos \left({\phi}_q-{\phi}_S\right)} $$ A TU , L cos ϕ q ϕ S from polarized exclusive hadron-in-jet production in polarizedepcollisions at EIC kinematics would allow us to access the helicity fragmentation functions. These observables demonstrate promising potential in investigating transverse momentum dependent PDFs and FFs and are worthwhile for further measurements. 
    more » « less
  7. We establish the correspondence between two well-known frameworks for quantum chromodynamics (QCD) multiple scattering in nuclear media: the color glass condensate (CGC) and the high-twist (HT) expansion formalism. We argue that a consistent matching between both frameworks, in their common domain of validity, is achieved by incorporating the subeikonal longitudinal momentum phase in the CGC formalism, which mediates the transition between coherent and incoherent scattering. We perform a detailed calculation and analysis of direct photon production in proton-nucleus scattering as a concrete example to establish the matching between HT and CGC up to twist-4, including initial- and final-state interactions, as well as their interferences. The techniques developed in this work can be adapted to other processes in electron-nucleus and proton-nucleus collisions, and they provide a potential avenue for a unified picture of dilute-dense dynamics in nuclear media. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  8. We investigate the transverse energy-energy correlator (TEEC) event-shape observable for back-to-back γ + h and Z + h production in both p p and p A collisions. Our study incorporates nuclear modifications into the transverse-momentum dependent (TMD) factorization framework, with resummation up to next-to-leading logarithmic accuracy, for TEEC as a function of the variable τ = ( 1 + cos ϕ ) / 2 , where ϕ is the azimuthal angle between the vector boson and the final hadron. We analyze the nuclear modification factor R p A in p Au collisions at Relativistic Heavy Ion Collider and p Pb collisions at the Large Hadron Collider. Our results demonstrate that the TEEC observable is a sensitive probe for nuclear modifications in TMD physics. Specifically, the changes in the τ -distribution shape provide insights into transverse momentum broadening effects in large nuclei, while measurements at different rapidities allow us to explore nuclear modifications in the collinear component of the TMD parton distribution functions in nuclei. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  9. The color glass condensate (CGC) effective theory and the collinear factorization at high twist (HT) are two well-known frameworks describing perturbative QCD multiple scatterings in nuclear media. It has long been recognized that these two formalisms have their own domain of validity in different kinematic regions. Taking direct photon production in proton-nucleus collisions as an example, we clarify for the first time the relation between CGC and HT at the level of a physical observable. We show that the CGC formalism beyond shock-wave approximation, and with the Landau-Pomeranchuk-Migdal interference effect is consistent with the HT formalism in the transition region where they overlap. Such a unified picture paves the way for mapping out the phase diagram of parton density in nuclear medium from dilute to dense region. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  10. In this Letter, we study the collinear limit of the energy-energy correlator in single-inclusive jet production in proton-proton and proton-nucleus collisions. We introduce a nonperturbative model that allows us to describe the energy-energy correlator in the entire angular region of the current experiments. Our results for proton-proton collisions show excellent agreement with CMS and ALICE data over a wide range of jet transverse momenta. For proton-nucleus collisions, we include modifications from the nuclear medium, and our predictions align well with the trends observed in recent ALICE measurements. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026