skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1945484

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Glycerol dialkyl glycerol tetraethers (GDGTs) are a group of membrane spanning lipids produced by both Archaea and Bacteria. Branched GDGTs (brGDGTs) are a class of these tetraether lipids known to be produced by certain bacteria and are commonly found in terrestrial environments. Due to their environmental ubiquity, high preservation potential, and role in membrane adaptation, brGDGTs form the basis of many widely employed paleoenvironmental proxies. The tetramethylated brGDGT Ia is the most commonly reported branched tetraether in culturedAcidobacteriaand is a key component of brGDGT‐based temperature indices. Herein, we report the first total synthesis of brGDGT Ia, thereby elucidating the relative configuration of the methyl branches as syn. We further demonstrate that VCD spectroscopy is a suitable tool to determine the absolute configuration of these cryptochiral compounds, a method waiting to be applied to the natural lipid, but currently hampered by its limited availability. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. Sphingolipids have long been of interest to the scientific community for their roles in eukaryotic cell structuring and disease pathology. Less is known about the occurrence and function of these diverse compounds in the bacterial domain of life, with most studies on bacterial sphingolipids focused on eukaryotic disease research and host-pathogen or host-symbiont interactions. Thus, bacterial contributions to environmental sphingolipid pools are poorly understood and the function of these lipids outside of pathogenicity remains largely unexplored. This report marks the first instance of sphingolipid production in a member of the phylum Acidobacteria, a globally ubiquitous phylum of soil bacteria. The occurrence of core- and intact-ceramides is reported for the AcidobacteriumSolibacter usitatusunder various environmentally relevant conditions. Shifts in the production of ceramides across temperature, pH, and oxygen gradients in this organism suggest that these compounds play a role in the physiological adaptation to environmental fluctuations. Additionally, the genetic basis of bacterial ceramide biosynthesis in this species is assessed and used to explore the potential for ceramide biosynthesis across the bacterial domain of life. The extent of the biosynthetic potential for Acidobacteria to produce ceramides coupled to the abundance of their genes in soil metagenomes suggests that soil sphingolipids should not be solely attributed to eukaryotic production. 
    more » « less
  3. Abstract. As global warming progresses, changes in high-latitude precipitation are expected to impart long-lasting impacts on Earth systems, including glacier mass balance and ecosystem structures. Reconstructing past changes in high-latitude precipitation and hydroclimate from networks of continuous lake records offers one way to improve forecasts of precipitation and precipitation–evaporation balances, but these reconstructions are currently hindered by the incomplete understanding of controls on lake and soil water isotopes. Here, we study the distribution of modern water isotopes in Icelandic lakes, streams, and surface soils collected in 2002, 2003, 2004, 2014, 2019, and 2020 to understand the geographic, geomorphic, and environmental controls on their regional and interannual variability. We find that lake water isotopes in open-basin (through-flowing) lakes reflect local precipitation, with biases toward the cold season, particularly in lakes with sub-annual residence times. Closed-basin lakes have water isotope and deuterium excess values consistent with evaporative enrichment. Interannual and seasonal variabilities of lake water isotopes at repeatedly sampled sites are consistent with instrumental records of winter snowfall; summer relative humidity; and atmospheric circulation patterns, such as the North Atlantic Oscillation. Summer surface soil water isotopes span the entire range of seasonal precipitation values in Iceland and appear to be consistently overprinted by evaporative enrichment, which can occur throughout the year, although the sampling depths were shallower than rooting depths for many plant types. This dataset provides new insight into the functionality of water isotopes in Icelandic environments and offers renewed possibilities for optimized site selection and proxy interpretation in future paleohydrological studies on this North Atlantic outpost. 
    more » « less
  4. Abstract. Distributions of branched glycerol dialkyl glycerol tetraethers (brGDGTs) are frequently employed for reconstructing terrestrial paleotemperaturesfrom lake sediment archives. Although brGDGTs are globally ubiquitous, the microbial producers of these membrane lipids remain unknown, precluding afull understanding of the ways in which environmental parameters control their production and distribution. Here, we advance this understanding inthree ways. First, we present 43 new high-latitude lake sites characterized by low mean annual air temperatures (MATs) and high seasonality, fillingan important gap in the global dataset. Second, we introduce a new approach for analyzing brGDGT data in which compound fractional abundances (FAs)are calculated within structural groups based on methylation number, methylation position, and cyclization number. Finally, we perform linear andnonlinear regressions of the resulting FAs against a suite of environmental parameters in a compiled global lake sediment dataset(n = 182). We find that our approach deconvolves temperature, conductivity, and pH trends in brGDGTs without increasing calibration errorsfrom the standard approach. We also find that it reveals novel patterns in brGDGT distributions and provides a methodology for investigating thebiological underpinnings of their structural diversity. Warm-season temperature indices outperformed MAT in our regressions, with the mean temperature of months abovefreezing yielding the highest-performing model (adjusted R2 = 0.91, RMSE = 1.97 ∘C, n = 182). The naturallogarithm of conductivity had the second-strongest relationship to brGDGT distributions (adjusted R2 = 0.83, RMSE = 0.66,n = 143), notably outperforming pH in our dataset (adjusted R2 = 0.73, RMSE = 0.57, n = 154) and providing a potential newproxy for paleohydrology applications. We recommend these calibrations for use in lake sediments globally, including at high latitudes, and detailthe advantages and disadvantages of each. 
    more » « less