skip to main content


Search for: All records

Award ID contains: 1945502

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    Abstract Large-eddy simulations are used to investigate the influence of a horizontal frontal zone, represented by a stationary uniform background horizontal temperature gradient, on the wind- and wave-driven ocean surface boundary layers. In a frontal zone, the temperature structure, the ageostrophic mean horizontal current, and the turbulence in the ocean surface boundary layer all change with the relative angle among the wind and the front. The net heating and cooling of the boundary layer could be explained by the depth-integrated horizontal advective buoyancy flux, called the Ekman Buoyancy Flux (or the Ekman-Stokes Buoyancy Flux if wave effects are included). However, the detailed temperature profiles are also modulated by the depth-dependent advective buoyancy flux and submesoscale eddies. The surface current is deflected less (more) to the right of the wind and wave when the depth-integrated advective buoyancy flux cools (warms) the ocean surface boundary layer. Horizontal mixing is greatly enhanced by submesoscale eddies. The eddy-induced horizontal mixing is anisotropic and is stronger to the right of the wind direction. Vertical turbulent mixing depends on the superposition of the geostrophic and ageostrophic current, the depth-dependent advective buoyancy flux, and submesoscale eddies. 
    more » « less
  3. null (Ed.)