skip to main content


Search for: All records

Award ID contains: 1946189

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Energy transport in proteins is critical to a variety of physical, chemical, and biological processes in living organisms. While strenuous efforts have been made to study vibrational energy transport in proteins, thermal transport processes across the most fundamental building blocks of proteins, i.e. helices, are not well understood. This work studies energy transport in a group of “isomer” helices. The π-helix is shown to have the highest thermal conductivity, 110% higher than that of the α-helix and 207% higher than that of the 3 10 -helix. The H-bond connectivity is found to govern thermal transport mechanisms including the phonon spectral energy density, dispersion, mode-specific transport, group velocity, and relaxation time. The energy transport is strongly correlated with the H-bond strength which is also modulated by the H-bond connectivity. These fundamental insights provide a novel perspective for understanding energy transfer in proteins and guiding a rational molecule-level design of novel materials with configurable H-bonds. 
    more » « less
  2. Efficient heat dissipation in batteries is important for thermal management against thermal runaway and chemical instability at elevated temperatures. Nevertheless, thermal transport processes in battery materials have not been well understood especially considering their complicated microstructures. In this study, lattice thermal transport in lithium cobalt oxide (LiCoO 2 ), a popular cathode material for lithium ion batteries, is investigated via molecular dynamics-based approaches and thermal resistance models. A LiCoO 2 single-crystal is shown to have thermal conductivities in the order of 100 W m −1 K −1 with strong anisotropy, temperature dependence, and size effects. By comparison, polycrystalline LiCoO 2 is more isotropic with much lower thermal conductivities. This difference is caused by random grain orientations, the thermal resistance of grain boundaries, and size-dependent intra-grain thermal conductivities that are unique to polycrystals. The grain boundary thermal conductance is calculated to be in the range of 7.16–25.21 GW m −2 K −1 . The size effects of the intra-grain thermal conductivities are described by two empirical equations. Considering all of these effects, two thermal resistance models are developed to predict the thermal conductivity of polycrystalline LiCoO 2 . The two models predict a consistent thermal conductivity–grain size relationship that agrees well with molecular dynamics simulation results. The insights revealed by this study may facilitate future efforts on battery materials design for improved thermal management. 
    more » « less
  3. Interfacial thermal transport is a critical physical process determining the performance of many material systems with small-scale features. Recently, self-assembled monolayers and polymer brushes have been widely used to engineer material interfaces presenting unprecedented properties. Here, we demonstrate that poly(vinyl alcohol) (PVA) monolayers with hierarchically arranged hydrogen bonds drastically enhance interfacial thermal conductance by a factor of 6.22 across the interface between graphene and poly(methyl methacrylate) (PMMA). The enhancement is tunable by varying the number of grafted chains and the density of hydrogen bonds in the unique hierarchical hydrogen bond network. The extraordinary enhancement results from a synergy of hydrogen bonds and other structural and thermal factors including molecular morphology, chain orientation, interfacial vibrational coupling and heat exchange. Two types of hydrogen bonds, i.e. PVA–PMMA hydrogen bonds and PVA–PVA hydrogen bonds, are analyzed and their effects on various structural and thermal properties are systematically investigated. These results are expected to provide new physical insights for interface engineering to achieve tunable thermal management and energy efficiency in a wide variety of systems involving polymers and biomaterials. 
    more » « less