skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.

Search for: All records

Award ID contains: 1947440

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In recent years, we have seen increased interest in applying machine learning to system problems. For example, there has been work on applying machine learning to improve query optimization, indexing, storage layouts, scheduling, log-structured merge trees, sorting, compression, and sketches, among many other data management tasks. Arguably, the ideas behind these techniques are similar: machine learning is used to model the data and/or workload in order to derive a more efficient algorithm or data structure. Ultimately, these techniques will allow us to build "instance-optimized" systems: that is, systems that self-adjust to a given workload and data distribution to provide unprecedented performance without the need for tuning by an administrator. While many of these techniques promise orders-of-magnitude better performance in lab settings, there is still general skepticism about how practical the current techniques really are. The following is intended as a progress report on ML for Systems and its readiness for real-world deployments, with a focus on our projects done as part of the Data Systems and AI Lab (DSAIL) at MIT By no means is it a comprehensive overview of all existing work, which has been steadily growing over the past several years not only in the database community but also in the systems, networking, theory, PL, and many other adjacent communities. 
    more » « less
  2. Data privacy within the context of heterogenous data and data management systems continues to be an important issue. At the Poly?19 workshop, held in conjunction with VLDB 2019 in Los Angeles, CA, one of the major themes explored was the implication of data privacy regulations such as GDPR to systems composed of multiple heterogenous databases. This summary outlines some of the major approaches and directions presented by various presenters during the privacy portion of the Poly?19 workshop. 
    more » « less
  3. null (Ed.)
    Automatic machine learning (AML) is a family of techniques to automate the process of training predictive models, aiming to both improve performance and make machine learning more accessible. While many recent works have focused on aspects of the machine learning pipeline like model selection, hyperparameter tuning, and feature selection, relatively few works have focused on automatic data augmentation. Automatic data augmentation involves finding new features relevant to the user's predictive task with minimal "human-in-the-loop" involvement. We present ARDA, an end-to-end system that takes as input a dataset and a data repository, and outputs an augmented data set such that training a predictive model on this augmented dataset results in improved performance. Our system has two distinct components: (1) a framework to search and join data with the input data, based on various attributes of the input, and (2) an efficient feature selection algorithm that prunes out noisy or irrelevant features from the resulting join. We perform an extensive empirical evaluation of different system components and benchmark our feature selection algorithm on real-world datasets. 
    more » « less