skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1947453

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Madliger, Christine (Ed.)
    Abstract Hormone monitoring of at-risk species can be valuable for evaluation of individual physiological status. Traditional non-invasive endocrine monitoring from urine and faeces typically captures only a short window in time, poorly reflecting long-term hormone fluctuations. We examined toenail trimmings collected from African (Loxodonta africana) and Asian (Elephas maximus) elephants during routine foot care, to determine if long-term hormone patterns are preserved in these slow-growing keratinized tissues. We first measured the growth rate of elephant toenails biweekly for one year, to establish the temporal delay between deposition of hormones into nail tissue (at the proximal nail bed) and collection of toenail trimmings months later (at the distal tip of the nail). In African elephants, toenails grew ~0.18 ± 0.015 mm/day (mean ± SEM) and in Asian elephants, toenails grew ~0.24 ± 0.034 mm/day. This slow growth rate, combined with the large toenail size of elephants, may mean that toenails could contain a ‘hormone timeline’ of over a year between the nail bed and nail tip. Progesterone, testosterone and cortisol were readily detectable using commercial enzyme immunoassays, and all assays passed validations, indicating that these hormones can be accurately quantified in elephant toenail extract. In most cases, variations in hormone concentrations reflected expected physiological patterns for adult females and males (e.g. ovarian cycling and musth) and matched individual health records from participating zoos. Progesterone patterns aligned with our calculations of temporal delay, aligning with female ovarian cycling from over six months prior. Unexpectedly, male testosterone patterns aligned with current musth status at the time of sample collection (i.e. rather than prior musth status). Though this sample type will require further study, these results indicate that preserved hormone patterns in elephant toenails could give conservationists a new tool to aid management of elephant populations. 
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  2. Abstract Southern hemisphere blue (Balaenoptera musculus intermedia) and fin (Balaenoptera physalus) whales are the largest predators in the Southern Ocean, with similarities in morphology and distribution. Yet, understanding of their life history and foraging is limited due to current low abundances and limited ecological data. To address these gaps, historic Antarctic blue (n = 5) and fin (n = 5) whale baleen plates, collected in 1947–1948 and recently rediscovered in the Smithsonian National Museum of Natural History, were analyzed for bulk (δ13C and δ15N) stable isotopes. Regular oscillations in isotopic ratios, interpreted as annual cycles, revealed that baleen plates contain approximately 6 years (14.35 ± 1.20 cm year−1) of life history data in blue whales and 4 years (16.52 ± 1.86 cm year−1) in fin whales. Isotopic results suggest that: (1) while in the Southern Ocean, blue and fin whales likely fed at the same trophic level but demonstrated niche differentiation; (2) fin whales appear to have had more regular annual migrations; and (3) fin whales may have migrated to ecologically distinct sub‐Antarctic waters annually while some blue whales may have resided year‐round in the Southern Ocean. These results reveal differences in ecological niche and life history strategies between Antarctic blue and fin whales during a time period when their populations were more abundant than today, and before major human‐driven climatic changes occurred in the Southern Ocean. 
    more » « less
  3. Narayan, Edward (Ed.)
    Abstract Understanding calving rates of wild whale populations is critically important for management and conservation. Reproduction of humpback whales (Megaptera novaeangliae) is difficult to monitor and, even with long-term sighting studies, basic physiological information such as pregnancy rates and calving intervals remain poorly understood in many populations. We hypothesized that pregnant whales have sustained elevations in baleen progesterone that temporally correlate with gestation. To test this hypothesis, baleen progesterone profiles from two adult female North Pacific humpbacks, both with extensive sighting records and documented pregnancies, were compared to those of a nulliparous female (adult female never seen with a calf) and a juvenile male. Baleen specimens recovered during necropsy were subsampled every 2 cm from the base to the tip of the plate, with each interval representing 30–45 days of growth. Homogenized baleen powder was assayed for progesterone using enzyme immunoassays. The date of growth of each sampling location on the baleen plate was estimated based on stable isotope analysis of annual δ15N cycles. Progesterone profiles from both pregnant whales showed sustained high progesterone content (>350 ng/g) in areas corresponding to known pregnancies, inferred from calf sightings and post-mortem data. The younger female, estimated to be 13 years old, had higher progesterone during pregnancy than the 44.5 year old, but levels during non-pregnancy were similar. The nulliparous female and the male had low progesterone throughout their baleen plates. Baleen hormone analysis can determine how progesterone concentrations change throughout gestation and has potential for estimating age at first reproduction, pregnancy intervals, failed pregnancies and early calf mortality. Understanding rates of calving and current and historic reproductive patterns in humpbacks is vital to continuing conservation measures in this species. 
    more » « less
  4. Free, publicly-accessible full text available June 1, 2025
  5. Abstract Understanding reproductive physiology in mysticetes has been slowed by the lack of repeated samples from individuals. Analysis of humpback whale baleen enables retrospective hormone analysis within individuals dating back 3–5 years before death. Using this method, we investigated differences in four steroid hormones involved in reproduction and mating during confirmed pregnant and non-pregnant periods in two female humpback whales (Megaptera novaeangliae) with known reproductive histories based on sightings and necropsy data. Cortisol, corticosterone, testosterone, and estradiol concentrations were determined via enzyme immunoassay using subsamples of each baleen plate at 2 cm intervals. There were no significant differences in cortisol or corticosterone during pregnancy when compared to non-pregnancy (inter-calving interval), but there were significant differences between the two whales in average glucocorticoid concentrations, with the younger whale showing higher values overall. For testosterone, levels for the younger female peaked at parturition in one pregnancy, but also had spikes during non-pregnancy. The older female had three large spikes in testosterone, one of which was associated with parturition. Estradiol had large fluctuations in both whales but had generally lower concentrations during non-pregnancy than during pregnancy. There were peaks in estradiol before each pregnancy, possibly coinciding with ovulation, and peaks coinciding with the month of parturition. Both estradiol and testosterone could be useful for determining ovulation or impending birth. Using baleen to investigate retrospective steroid hormone profiles can be used for elucidating long-term patterns of physiological change during gestation. Lay summary Case studies of two pregnant humpback whales whose hormones were analyzed in baleen may illuminate when humpback whales ovulate, gestate, and give birth. These physiological metrics could assist in accurate population growth assessments and conservation of the species. This study shows that baleen hormone analysis can be a useful tool for understanding whale reproductive physiology. 
    more » « less
  6. Synopsis Male mammals of seasonally reproducing species typically have annual testosterone (T) cycles, with T usually peaking during the breeding season, but occurrence of such cycles in male mysticete whales has been difficult to confirm. Baleen, a keratinized filter-feeding apparatus of mysticetes, incorporates hormones as it grows, such that a single baleen plate can record years of endocrine history with sufficient temporal resolution to discern seasonal patterns. We analyzed patterns of T every 2 cm across the full length of baleen plates from nine male bowhead whales (Balaena mysticetus) to investigate occurrence and regularity of T cycles and potential inferences about timing of breeding season, sexual maturation, and reproductive senescence. Baleen specimens ranged from 181–330 cm in length, representing an estimated 11 years (smallest whale) to 22 years (largest whale) of continuous baleen growth, as indicated by annual cycles in stable isotopes. All baleen specimens contained regularly spaced areas of high T content (T peaks) confirmed by time series analysis to be cyclic, with periods matching annual stable isotope cycles of the same individuals. In 8 of the 9 whales, T peaks preceded putative summer isotope peaks by a mean of 2.8 months, suggesting a mating season in late winter / early spring. The only exception to this pattern was the smallest and youngest male, which had T peaks synchronous with isotope peaks. This smallest, youngest whale also did not have T peaks in the first half of the plate, suggesting initiation of T cycling during the period of baleen growth. Linear mixed effect models suggest that whale age influences T concentrations, with the two largest and oldest males exhibiting a dramatic decline in T peak concentration across the period of baleen growth. Overall, these patterns are consistent with onset of sexual maturity in younger males and possible reproductive senescence in older males. We conclude that adult male bowheads undergo annual T cycles, and that analyses of T in baleen may enable investigation of reproductive seasonality, timing of the breeding season, and life history of male whales. 
    more » « less