skip to main content

Search for: All records

Award ID contains: 1948117

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    As deep learning algorithms drive the progress in protein structure prediction, a lot remains to be studied at this merging superhighway of deep learning and protein structure prediction. Recent findings show that inter-residue distance prediction, a more granular version of the well-known contact prediction problem, is a key to predicting accurate models. However, deep learning methods that predict these distances are still in the early stages of their development. To advance these methods and develop other novel methods, a need exists for a small and representative dataset packaged for faster development and testing. In this work, we introduce protein distance net (PDNET), a framework that consists of one such representative dataset along with the scripts for training and testing deep learning methods. The framework also includes all the scripts that were used to curate the dataset, and generate the input features and distance maps. Deep learning models can also be trained and tested in a web browser using free platforms such as Google Colab. We discuss how PDNET can be used to predict contacts, distance intervals, and real-valued distances.

    more » « less
  2. null (Ed.)
    Abstract Background Protein inter-residue contact and distance prediction are two key intermediate steps essential to accurate protein structure prediction. Distance prediction comes in two forms: real-valued distances and ‘binned’ distograms, which are a more finely grained variant of the binary contact prediction problem. The latter has been introduced as a new challenge in the 14th Critical Assessment of Techniques for Protein Structure Prediction (CASP14) 2020 experiment. Despite the recent proliferation of methods for predicting distances, few methods exist for evaluating these predictions. Currently only numerical metrics, which evaluate the entire prediction at once, are used. These give no insight into the structural details of a prediction. For this reason, new methods and tools are needed. Results We have developed a web server for evaluating predicted inter-residue distances. Our server, DISTEVAL, accepts predicted contacts, distances, and a true structure as optional inputs to generate informative heatmaps, chord diagrams, and 3D models. All of these outputs facilitate visual and qualitative assessment. The server also evaluates predictions using other metrics such as mean absolute error, root mean squared error, and contact precision. Conclusions The visualizations generated by DISTEVAL complement each other and collectively serve as a powerful tool for both quantitative and qualitative assessments of predicted contacts and distances, even in the absence of a true 3D structure. 
    more » « less