Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The capacity of an apex predator to produce nonconsumptive effects (NCEs) in multiple prey trophic levels can create considerable complexity in nonconsumptive cascading interactions, but these effects are poorly studied. We examined such effects in a model food web where the apex predator (blue crabs) releases chemical cues in urine that affect both the intermediate consumer (mud crabs seek shelter) and the basal prey (oysters are induced to grow stronger shells). Shelter availability and predator presence were manipulated in a laboratory experiment to identify patterns in species interactions. Then, experimentally induced and uninduced oysters were planted across high‐quality and low‐quality habitats with varying levels of shelter availability and habitat heterogeneity to determine the consistency of these patterns in the field. Oyster shell thickening in response to blue crab chemical cues generally protected oysters from mud crab predation in both the laboratory and in field environments that differed in predation intensity, structural complexity, habitat heterogeneity, and predator composition. However, NCEs on the intermediate predator (greater use of refugia) opposed the NCEs on oyster prey in the interior of oyster reefs while still providing survival advantages to basal prey on reef edges and bare substrates. Thus, the combined effects of changing movement patterns of intermediate predators and morphological defenses of basal prey create complex, but predictable, patterns of NCEs across landscapes and ecotones that vary in structural complexity. Generalist predators that feed on multiple trophic levels are ubiquitous, and their potential effects on NCEs propagating simultaneously to different trophic levels must be quantified to understand the role of NCEs in food webs.more » « less
-
NA (Ed.)The realized niche of many sessile intertidal organisms is constrained by different stressors that set boundaries for their distribution based on tidal elevation. Higher tidal elevation increases desiccation risk but can provide a refuge from predation. Conversely, deeper water increases feeding time and growth but also increases vulnerability to benthic predators. Eastern oysters Crassostrea virginica harden their shells in response to predator cues, which reduces their mortality from predation. We performed a field study to investigate if this defense mechanism could be manipulated to expand their realized niche and increase space for oyster survival and growth. We raised oysters in the presence of predators (blue crabs Callinectes sapidus) or in nopredator controls, measured changes in shell morphology, and then monitored oyster survival at different tidal elevations across 7 locations with different predator and salinity regimes. Oyster survival was significantly higher at the highest tidal elevations tested. Exposure to predators before deployment also significantly increased shell hardness and survival, with intertidal oysters experiencing greater improvement in survival from cue exposure than subtidal oysters. Intertidal placement (>15% exposure time) had larger effects on survival than predator exposure, but predator exposure increased oyster survival at all tidal elevations, suggesting that predator induction could help oysters both deter predators and resist abiotic stressors like desiccation, and perhaps increase the spatial areas where oysters can be restoredmore » « lessFree, publicly-accessible full text available April 18, 2026
-
NA (Ed.)Oyster reef restoration efforts and on-bottom aquaculture are frequently plagued with high predation rates. Oysters are phenotypically plastic, and rearing juvenile oysters, Crassostrea virginica, with predator cues causes them to grow stronger shells that increases survivorship in the field. However, induced defenses (e.g., shell hardening in oysters) are often associated with cost-benefit trade-offs, and the extent the increased shell strength persists into adulthood and alters the growth of somatic and reproductive tissues remains unknown. We raised diploid oysters (used in reef restoration) and triploid oysters (used in aquaculture) with and without predator cues for one month before placing individuals on an oyster farm to grow to market size. Oyster shell characteristics, soft tissue mass, and reproductive investment were measured periodically over one year of culture and compared across treatments. Both diploid and triploid oysters had significantly stronger and smaller shells than controls at the end of their nursery period. However, while diploid shells became 15 % stronger and 17 % smaller than controls, triploid shells became 28 % stronger and 23 % smaller. Additionally, triploid oysters exposed to predator cues returned to the size of controls faster and maintained their shell strength differences longer than diploids. Differences in soft tissue mass between treatments mirrored the patterns exhibited in shell size and weight with greater initial physiological costs and faster recovery for triploid individuals. There was no significant difference in somatic or reproductive tissue mass between induced and control oysters of the same ploidy after seven months in the field. Triploid oysters were 15–110 % larger than diploids depending on the characteristic measured at maturity. Additionally, there was a significant interaction between treatment and ploidy because induced triploids had marginally greater growth than their control counterparts while induced diploids had marginally less growth than controls. These findings demonstrate that physiological costs of oysters reacting to predators in early life stages are minimal by the time individuals reach maturity. Early exposure to predator cues is a promising tool for improving oyster survivorship in restoration and aquaculture operations, especially in regions with high predation pressure.more » « lessFree, publicly-accessible full text available February 15, 2026
-
Predator–prey interactions are a key feature of ecosystems and often chemically mediated, whereby individuals detect molecules in their environment that inform whether they should attack or defend. These molecules are largely unidentified, and their discovery is important for determining their ecological role in complex trophic systems. Homarine and trigonelline are two previously identified blue crab (Callinectes sapidus) urinary metabolites that cause mud crabs (Panopeus herbstii) to seek refuge, but it was unknown whether these molecules influence other species within this oyster reef system. In the current study, homarine, trigonelline, and blue crab urine were tested on juvenile oysters (Crassostrea virginica) to ascertain if the same molecules known to alter mud crab behavior also affect juvenile oyster morphology, thus mediating interactions between a generalist predator, a mesopredator, and a basal prey species. Oyster juveniles strengthened their shells in response to blue crab urine and when exposed to homarine and trigonelline in combination, especially at higher concentrations. This study builds upon previous work to pinpoint specific molecules from a generalist predator’s urine that induce defensive responses in two marine prey from different taxa and trophic levels, supporting the hypothesis that common fear molecules exist in ecological systems.more » « less
An official website of the United States government
