skip to main content


Search for: All records

Award ID contains: 1949067

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Despite its relatively small magnitude, cross-channel circulation in estuaries can influence the along-channel momentum balance, dispersion, and transport. We investigate spatial and temporal variation in cross-channel circulation at two contrasting sites in the Hudson River estuary. The two sites differ in the relative strength and direction of Coriolis and curvature forcing. We contrast the patterns and magnitudes of flow at the two sites during varying conditions in stratification driven by tidal amplitude and river discharge. We found well-defined flows during flood tides at both sites, characterized by mainly two-layer structures when the water column was more homogeneous and structures with three or more layers when the water column was more stratified. Ebb tides had generally weaker and less definite flows, except at one site where curvature and Coriolis reinforced each other during spring tide ebbs. Cross-channel currents had similar patterns, but were oppositely directed at the two sites, demonstrating the importance of curvature even in channels with relatively gradual curves. Coriolis and curvature dominated the measured terms in the cross-channel momentum balance. Their combination was generally consistent with driving the observed patterns and directions of flow, but local acceleration and cross-channel advection made some notable contributions. A large residual in the momentum balance indicates that some combination of vertical stress divergence, baroclinic pressure gradients, and along-channel and vertical advection must play an essential role, but data limitations prevented an accurate estimation of these terms. Cross-channel advection affected the along-channel momentum balance at times, with implications for the exchange flow’s strength.

    Significance Statement

    Currents that flow across the channel in an estuary move slower than those flowing along the channel, but they can transport materials and change water properties in important ways, affecting human uses of estuaries such as shipping, aquaculture, and recreation. We wanted to better understand cross-channel currents in the Hudson River estuary. We found that larger tides produced the strongest cross-channel currents with a two-layer pattern, compared to weaker currents with three layers during smaller tides. Higher or lower river flow also affected current strength. Comparing two locations, we saw cross-channel currents moving in opposite directions because of differences in the curvature of the river channel. Our results show how channel curvature and Earth’s rotation combine to produce cross-channel currents.

     
    more » « less
  2. Abstract

    After a relaxation of the regional southward, upwelling‐favorable winds along the central California coast, warm water from the Santa Barbara Channel propagates northward as a buoyant plume. As the plume transits up the coast, it causes abrupt temperature changes and modifies shelf stratification. We use temperature and velocity data from 35 moorings north of Pt. Arguello to track the evolution of a buoyant plume after a wind relaxation event in October 2017. The moorings were deployed September–October 2017 and span a ∼30 km stretch of coastline, including nine cross‐shelf transects that range from 17 to 100 m water depth. The high spatial resolution of the data set enables us to track the spatiotemporal evolution of the plume, including across‐front temperature difference, cross‐shore structure, and propagation velocity. We observe an alongshore current velocity signal that takes ∼10 hr to propagate ∼25 km alongshore (∼0.7 m/s) and a temperature signal that takes ∼34 hr to propagate the same distance (∼0.2 m/s). The plume cools as it transits northward, leading to a decrease in the cross‐front temperature difference and the reduced gravity (g’). The plume’s propagation velocity is nonuniform in space and time, with accelerations and decelerations unexplained by the alongshore reduction ing’or advection by tidal currents. As the plume reaches the northernmost part of the mooring array, its temperature variability is obscured by internal waves, a prominent feature in the region. We focus on one relaxation event but observe five other similar events over the 2 months record.

     
    more » « less