skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1950364

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT The ability of trees to acquire soil nutrients under future climate conditions will influence forest composition and function in a warmer world. Rarely are multiple belowground carbon allocation pathways measured simultaneously in large global change experiments, restricting our understanding of how trees may shift their allocation of resources to different nutrient acquisition mechanisms under future climates. Leveraging a 20‐year soil warming experiment, we show that ectomycorrhizal (EM) trees reduce mycorrhizal colonization and root exudation while increasing fine root biomass, while arbuscular mycorrhizal (AM) trees largely maintained their belowground carbon allocation patterns in warmer soils. We suggest that AM trees may be better adapted to thrive under global warming due to higher rates of nitrogen mineralization in warmer soils and the ability of their mycorrhizal symbiont to acquire mineralized inorganic nutrients, whereas EM trees may need to alter their belowground carbon allocation patterns to remain competitive as global temperatures rise. 
    more » « less
  2. Abstract Nature‐based climate solutions (NCS) are championed as a primary tool to mitigate climate change, especially in forested regions capable of storing and sequestering vast amounts of carbon. New England is one of the most heavily forested regions in the United States (>75% forested by land area), and forest carbon is a significant component of climate mitigation policies. Large infrequent disturbances, such as hurricanes, are a major source of uncertainty and risk for policies relying on forest carbon for climate mitigation, especially as climate change is projected to alter the intensity and extent of hurricanes. To date, most research into disturbance impacts on forest carbon stocks has focused on fire. Here, we show that a single hurricane in the region can down between 121 and 250 MMTCO2e or 4.6%–9.4% of the total aboveground forest carbon, much greater than the carbon sequestered annually by New England's forests (16 MMTCO2e year−1). However, emissions from hurricanes are not instantaneous; it takes approximately 19 years for downed carbon to become a net emission and 100 years for 90% of the downed carbon to be emitted. Reconstructing hurricanes with the HURRECON and EXPOS models across a range of historical and projected wind speeds, we find that an 8% and 16% increase in hurricane wind speeds leads to a 10.7‐ and 24.8‐fold increase in the extent of high‐severity damaged areas (widespread tree mortality). Increased wind speed also leads to unprecedented geographical shifts in damage, both inland and northward, into heavily forested regions traditionally less affected by hurricanes. Given that a single hurricane can emit the equivalent of 10+ years of carbon sequestered by forests in New England, the status of these forests as a durable carbon sink is uncertain. Understanding the risks to forest carbon stocks from disturbances is necessary for decision‐makers relying on forests as a NCS. 
    more » « less
  3. Summary Leaf‐out in temperate forests is a critical transition point each spring and advancing with global change. The mechanism linking phenological variation to external cues is poorly understood. Nonstructural carbohydrate (NSC) availability may be key.Here, we use branch cuttings from northern red oak (Quercus rubra) and measure NSCs throughout bud development in branch tissue. Given genes and environment influence phenology, we placed branches in an arrayed factorial experiment (three temperatures × two photoperiods, eight genotypes) to examine their impact on variation in leaf‐out timing and corresponding NSCs.Despite significant differences in leaf‐out timing between treatments, NSC patterns were much more consistent, with all treatments and genotypes displaying similar NSC concentrations across phenophases. Notably, the moderate and hot temperature treatments reached the same NSC concentrations and phenophases at the same growing degree days (GDD), but 20 calendar days apart, while the cold treatment achieved only half the GDD of the other two.Our results suggest that NSCs are coordinated with leaf‐out and could act as a molecular clock, signaling to cells the passage of time and triggering leaf development to begin. This link between NSCs and budburst is critical for improving predictions of phenological timing. 
    more » « less
  4. Abstract Over the past three decades, the Harvard Forest Summer Research Program in Ecology (HF‐SRPE) has been at the forefront of expanding the ecological tent for minoritized or otherwise marginalized students. By broadening the definition of ecology to include fields such as data science, software engineering, and remote sensing, we attract a broader range of students, including those who may not prioritize field experiences or who may feel unsafe working in rural or urban field sites. We also work towards a more resilient society in which minoritized or marginalized students can work safely, in part by building teams of students and mentors. Teams collaborate on projects that require a diversity of approaches and create opportunities for students and mentors alike to support one another and share leadership. Finally, HF‐SRPE promotes an expanded view of what it means to become an ecologist. We value and support diverse career paths for ecologists to work in all parts of society, to diversify the face of ecology, and to bring different perspectives together to ensure innovations in environmental problem solving for our planet. 
    more » « less
  5. Free, publicly-accessible full text available March 1, 2026
  6. Yavitt, Joseph B. (Ed.)
    Conspecific negative density dependence (CNDD) promotes tree species diversity by reducing recruitment near conspecific adults due to biotic feedbacks from herbivores, pathogens, or competitors. While this process is well-described in tropical forests, tests of temperate tree species range from strong positive to strong negative density dependence. To explain this, several studies have suggested that tree species traits may help predict the strength and direction of density dependence: for example, ectomycorrhizal-associated tree species typically exhibit either positive or weaker negative conspecific density dependence. More generally, the strength of density dependence may be predictably related to other species-specific ecological attributes such as shade tolerance, or the relative local abundance of a species. To test the strength of density dependence and whether it affects seedling community diversity in a temperate forest, we tracked the survival of seedlings of three ectomycorrhizal-associated species experimentally planted beneath conspecific and heterospecific adults on the Prospect Hill tract of the Harvard Forest, in Massachusetts, USA. Experimental seedling survival was always lower under conspecific adults, which increased seedling community diversity in one of six treatments. We compared these results to evidence of CNDD from observed sapling survival patterns of 28 species over approximately 8 years in an adjacent 35-ha forest plot. We tested whether species-specific estimates of CNDD were associated with mycorrhizal association, shade tolerance, and local abundance. We found evidence of significant, negative conspecific density dependence (CNDD) in 23 of 28 species, and positive conspecific density dependence in two species. Contrary to our expectations, ectomycorrhizal-associated species generally exhibited stronger (e.g., more negative) CNDD than arbuscular mycorrhizal-associated species. CNDD was also stronger in more shade-tolerant species but was not associated with local abundance. Conspecific adult trees often have a negative influence on seedling survival in temperate forests, particularly for tree species with certain traits. Here we found strong experimental and observational evidence that ectomycorrhizal-associating species consistently exhibit CNDD. Moreover, similarities in the relative strength of density dependence from experiments and observations of sapling mortality suggest a mechanistic link between negative effects of conspecific adults on seedling and sapling survival and local tree species distributions. 
    more » « less
  7. Intra-annual density fluctuations (IADFs) are triggered by environmental cues, but whether they are distributed uniformly throughout the stem is not well documented. The spatial distribution of IADFs could help us understand variations in cambial sensitivity to environmental cues throughout the tree. We investigate how IADF distribution varies radially, longitudinally, and circumferentially within white pine (Pinus strobus L.) stems. We took wood samples at breast height, near branches, and at the top of the trees. We identified IADFs visually and measured their radial position within a ring as well as their circumferential arc in cross-sections. Intra-annual density fluctuations occurred in 22.2% of rings. The radial position of IADFs within a ring was remarkably consistent at roughly 80% of the total annual radial increment across heights, trees, and years of formation. The main factors affecting the likelihood of IADF occurrence were ring width, year of formation, and the interaction between the two. Being near branches or at the top of the tree slightly increased the probability of occurrence. Though the sample size was not large enough to provide conclusive results about the circumferential distribution of IADFs, our data suggest that the circumferential arc of the IADFs might be conserved throughout the stem. 
    more » « less