- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Liepinya, Diana (3)
-
Smeu, Manuel (3)
-
Shepard, Robert (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Liepinya, Diana; Shepard, Robert; Smeu, Manuel (, Computational materials science)
-
Liepinya, Diana; Smeu, Manuel (, Energy Material Advances)Ca-ion batteries (CIBs) have the potential to provide inexpensive energy storage, but their realization is impeded by the lack of suitable electrolytes. Motivated by recent experimental progress, we perform ab initio molecular dynamics simulations to investigate early decomposition reactions at the anode-electrolyte interface. By examining different combinations of solvent—tetrahydrofuran (THF) or ethylene carbonate (EC)—and salt—Ca(BH 4 ) 2 , Ca(BF 4 ) 2 , Ca(BCl 4 ) 2 , and Ca(ClO 4 ) 2 —we identify a variety of behavioral trends between electrolyte solutions. Next, we perform a separate trajectory with pure THF and gradually increased negative charge; despite an addition of -32 e , no THF decomposition is detected. Charge analysis reveals that in a reductive environment, THF distributes excess charge evenly across its hydrocarbon backbone, while EC concentrates charge on its ester oxygens and carbonyl carbon, resulting in decomposition. Graphs of charge vs. time for both solvents reveal that EC decomposition products can be reduced by up to five electrons, while those of THF are limited to a single electron. Ultimately, we find Ca(BH 4 ) 2 and THF to be the most stable solution investigated herein, corroborating experimental evidence of its suitability as a CIB electrolyte.more » « less
An official website of the United States government

Full Text Available