skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1950811

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The CMU Robotics Institute Summer Scholars (RISS) community prepares students for STEM graduate programs through immersive research experiences, mentorship, community engagement, and graduate school application support. This is achieved through a compelling sense of community across multiple platforms. RISS’ holistic scholar-focused support leads to 90% of RISS scholars applying to graduate school. 
    more » « less
    Free, publicly-accessible full text available July 31, 2025
  2. Free, publicly-accessible full text available July 31, 2025
  3. Light Field Networks, the re-formulations of radiance fields to oriented rays, are magnitudes faster than their coordinate network counterparts, and provide higher fidelity with respect to representing 3D structures from 2D observations. They would be well suited for generic scene representation and manipulation, but suffer from one problem: they are limited to holistic and static scenes. In this paper, we propose the Dynamic Light Field Network (DyLiN) method that can handle non-rigid deformations, including topological changes. We learn a deformation field from input rays to canonical rays, and lift them into a higher dimensional space to handle discontinuities. We further introduce CoDyLiN, which augments DyLiN with controllable attribute inputs. We train both models via knowledge distillation from pretrained dynamic radiance fields. We evaluated DyLiN using both synthetic and real world datasets that include various non-rigid deformations. DyLiN qualitatively outperformed and quantitatively matched state-of-the-art methods in terms of visual fidelity, while being 25 - 71x computationally faster. We also tested CoDyLiN on attribute annotated data and it surpassed its teacher model. Project page: https://dylin2023.github.io. 
    more » « less
  4. Safety-guaranteed motion planning is critical for self-driving cars to generate collision-free trajectories. A layered motion planning approach with decoupled path and speed planning is widely used for this purpose. This approach is prone to be suboptimal in the presence of dynamic obstacles. Spatial-temporal approaches deal with path planning and speed planning simultaneously; however, the existing methods only support simple-shaped corridors like cuboids, which restrict the search space for optimization in complex scenarios. We propose to use trapezoidal prism-shaped corridors for optimization, which significantly enlarges the solution space compared to the existing cuboidal corridors-based method. Finally, a piecewise Bezier curve optimization is conducted in our proposed ´ corridors. This formulation theoretically guarantees the safety of the continuous-time trajectory. We validate the efficiency and effectiveness of the proposed approach in numerical and CommonRoad simulations 
    more » « less
  5. Liquids and granular media are pervasive throughout human environments. Their free-flowing nature causes people to constrain them into containers. We do so with thousands of different types of containers made out of different materials with varying sizes, shapes, and colors. In this work, we present a state-of-the-art sensing technique for robots to perceive what liquid is inside of an unknown container. We do so by integrating Visible to Near Infrared (VNIR) reflectance spectroscopy into a robot’s end effector. We introduce a hierarchical model for inferring the material classes of both containers and internal contents given spectral measurements from two integrated spectrometers. To train these inference models, we capture and open source a dataset of spectral measurements from over 180 different combinations of containers and liquids. Our technique demonstrates over 85% accuracy in identifying 13 different liquids and granular media contained within 13 different containers. The sensitivity of our spectral readings allow our model to also identify the material composition of the containers themselves with 96% accuracy. Overall, VNIR spectroscopy presents a promising method to give household robots a general-purpose ability to infer the liquids inside of containers, without needing to open or manipulate the containers. 
    more » « less
  6. A significant proportion of clinical physiologic monitoring alarms are false. This often leads to alarm fatigue in clinical personnel, inevitably compromising patient safety. To combat this issue, researchers have attempted to build Machine Learning (ML) models capable of accurately adjudicating Vital Sign (VS) alerts raised at the bedside of hemodynamically monitored patients as real or artifact. Previous studies have utilized supervised ML techniques that require substantial amounts of hand-labeled data. However, manually harvesting such data can be costly, time-consuming, and mundane, and is a key factor limiting the widespread adoption of ML in healthcare (HC). Instead, we explore the use of multiple, individually imperfect heuristics to automatically assign probabilistic labels to unlabeled training data using weak supervision. Our weakly supervised models perform competitively with traditional supervised techniques and require less involvement from domain experts, demonstrating their use as efficient and practical alternatives to supervised learning in HC applications of ML. 
    more » « less
  7. Contemporary autonomous vehicle (AV) benchmarks have advanced techniques for training 3D detectors, particularly on large-scale lidar data. Surprisingly, although semantic class labels naturally follow a long-tailed distribution, contemporary benchmarks focus on only a few common classes (e.g., pedestrian and car) and neglect many rare classes in-the-tail (e.g., debris and stroller). However, AVs must still detect rare classes to ensure safe operation. Moreover, semantic classes are often organized within a hierarchy, e.g., tail classes such as child and construction-worker are arguably subclasses of pedestrian. However, such hierarchical relationships are often ignored, which may lead to misleading estimates of performance and missed opportunities for algorithmic innovation. We address these challenges by formally studying the problem of Long-Tailed 3D Detection (LT3D), which evaluates on all classes, including those in-the-tail. We evaluate and innovate upon popular 3D detection codebases, such as CenterPoint and PointPillars, adapting them for LT3D. We develop hierarchical losses that promote feature sharing across common-vs-rare classes, as well as improved detection metrics that award partial credit to "reasonable" mistakes respecting the hierarchy (e.g., mistaking a child for an adult). Finally, we point out that fine-grained tail class accuracy is particularly improved via multimodal fusion of RGB images with LiDAR; simply put, small fine-grained classes are challenging to identify from sparse (lidar) geometry alone, suggesting that multimodal cues are crucial to long-tailed 3D detection. Our modifications improve accuracy by 5% AP on average for all classes, and dramatically improve AP for rare classes (e.g., stroller AP improves from 3.6 to 31.6)! Our code is available at this https URL. 
    more » « less
  8. With the increasing need for safe control in the domain of autonomous driving, model-based safety-critical control approaches are widely used, especially Control Barrier Function (CBF) based approaches. Among them, Exponential CBF (eCBF) is particularly popular due to its realistic applicability to high-relative-degree systems. However, for most of the optimization-based controllers utilizing CBF-based constraints, solution feasibility is a common issue raised from potential conflict among different constraints. Moreover, how to incorporate uncertainty into the eCBF-based constraints in high-relative-degree systems to account for safety remains an open challenge. In this paper, we present a novel approach to extend a eCBF-based safe critical controller to a probabilistic setting to handle potential motion uncertainty from system dynamics. More importantly, we leverage an optimization-based technique to provide a solution feasibility guarantee in run time, while ensuring probabilistic safety. Lane changing and intersection handling are demonstrated as two use cases, and experiment results are provided to show the effectiveness of the proposed approach. 
    more » « less