skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1951482

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Previous work involving integro-difference equations of a single species in a homogenous environment has emphasized spreading behaviour in unbounded habitats. We show that under suitable conditions, a simple scalar integro-difference equation incorporating a strong Allee effect and overcompensation can produce solutions where the population persists in an essentially bounded domain without spread despite the homogeneity of the environment. These solutions are robust in that they occupy a region of full measure in the parameter space. We develop bifurcation diagrams showing various patterns of nonspreading solutions from stable equilibria, period two, to chaos. We show that from a relatively uniform initial density with small stochastic perturbations a population consisting of multiple isolated patches can emerge. In ecological terms this work suggests a novel endogenous mechanism for the creation of patch boundaries.AMS subject classification. 92D40, 92D25 
    more » « less