skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1951707

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Microorganisms often navigate a complex environment composed of a viscous fluid with suspended microstructures such as elastic polymers and filamentous networks. These microstructures can have similar length scales to the microorganisms, leading to complex swimming dynamics. Some microorganisms secrete enzymes that dynamically change the elastic properties of the viscoelastic networks through which they move. In addition to biological organisms, microrobots have been engineered with the goals of mucin gel penetration or dissolving blood clots. In order to gain insight into the coupling between swimming performance and network remodeling, we used a regularized Stokeslet boundary element method to compute the motion of a microswimmer consisting of a rotating spherical body and counter-rotating helical flagellum. The viscoelastic network is represented by a network of points connected by virtual elastic linkages immersed in a viscous fluid. Here, we model the enzymatic dissolution of the network by bacteria or microrobots by dynamically breaking elastic linkages when the cell body of the swimmer falls within a given distance from the link. We investigate the swimming performance of the microbes as they penetrate and move through networks of different material properties, and also examine the effect of network remodeling. 
    more » « less
  2. The method of regularised stokeslets is widely used to model microscale biological propulsion. The method is usually implemented with only the single-layer potential, the double-layer potential being neglected, despite this formulation often not being justified a priori due to nonrigid surface deformation. We describe a meshless approach enabling the inclusion of the double layer which is applied to several Stokes flow problems in which neglect of the double layer is not strictly valid: the drag on a spherical droplet with partial-slip boundary condition, swimming velocity and rate of working of a force-free spherical squirmer, and trajectory, swimmer-generated flow and rate of working of undulatory swimmers of varying slenderness. The resistance problem is solved accurately with modest discretisation on a notebook computer with the inclusion of the double layer ranging from no-slip to free-slip limits; the neglect of the double-layer potential results in up to 24% error, confirming the importance of the double layer in applications such as nanofluidics, in which partial slip may occur. The squirming swimmer problem is also solved for both velocity and rate of working to within a small percent error when the double-layer potential is included, but the error in the rate of working is above 250% when the double layer is neglected. The undulating swimmer problem by contrast produces a very similar value of the velocity and rate of working for both slender and nonslender swimmers, whether or not the double layer is included, which may be due to the deformation’s ‘locally rigid body’ nature, providing empirical evidence that its neglect may be reasonable in many problems of interest. The inclusion of the double layer enables us to confirm robustly that slenderness provides major advantages in efficient motility despite minimal qualitative changes to the flow field and force distribution. 
    more » « less