skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1952693

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Gromov proved a quadratic decay inequality of scalar curvature for a class of complete manifolds. In this paper, we prove that for any uniformly contractible manifold with finite asymptotic dimension, its scalar curvature decays to zero at a rate depending only on the contractibility radius of the manifold and the diameter control of the asymptotic dimension. We construct examples of uniformly contractible manifolds with finite asymptotic dimension whose scalar curvature functions decay arbitrarily slowly. This shows that our result is the best possible. We prove our result by studying the index pairing between Dirac operators and compactly supported vector bundles with Lipschitz control. A key technical ingredient for the proof of our main result is a Lipschitz control for the topologicalK‐theory of finite dimensional simplicial complexes. 
    more » « less
  2. In this paper we prove the scalar curvature extremality and rigidity for a class of warped product spaces that are possibly degenerate at the two ends. The leaves of these warped product spaces can be any closed Riemannian manifolds with nonnegative curvature operators and nonvanishing Euler characteristics, flat tori, round spheres and their direct products. In particular, we obtain the scalar curvature extremality and rigidity for certain degenerate toric bands and also for round spheres with two antipodal points removed. This answers positively the corresponding questions of Gromov in all dimensions. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026