Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The surface air temperature (SAT) over the Sahara Desert has increased at a much faster rate than average tropical land in recent decades. This study examines the relative roles of anthropogenic greenhouse gas (GHG) forcing and sea surface temperature (SST) change in the observed Saharan temperature increase during boreal warm season from 1979 to 2020 using atmospheric general circulation model simulations. It is found that the SST forcing dominates the observed Saharan warming. Further analysis shows that the warming ocean forces the Saharan SAT increase by moving more energy to the Sahara Desert, while the water vapor feedback plays a secondary role. The reason for the stronger Saharan warming than the average tropical land given the same SST forcing is also explored. We found that the largest contributor to the warming contrast is the lapse‐rate feedback, which is attributable to the difference in the vertical warming profile.more » « less
-
Abstract Multiple stable equilibria are intrinsic to many complex dynamical systems, and have been identified in a hierarchy of climate models. Motivated by the idea that the Quaternary glacial–interglacial cycles could have resulted from orbitally forced transitions between multiple stable states mediated by internal feedbacks, this study investigates the existence and mechanisms of multiple equilibria in an idealized, energy-conserving atmosphere–ocean–sea ice general circulation model with a fully coupled carbon cycle. Four stable climates are found for identical insolation and global carbon inventory: an ice-free Warm climate, two intermediate climates (Cold and Waterbelt), and a fully ice-covered Snowball climate. A fifth state, a small ice cap state between Warm and Cold, is found to be barely unstable. Using custom radiative kernels and a thorough sampling of the model’s internal variability, three equilibria are investigated through the state dependence of radiative feedback processes. For fast feedbacks, the systematic decrease in surface albedo feedback from Cold to Warm states is offset by a similar increase in longwave water vapor feedback. At longer time scales, the key role of the carbon cycle is a dramatic lengthening of the adjustment time comparable to orbital forcings near the Warm state. The dynamics of the coupled climate–carbon system are thus not well separated in time from orbital forcings, raising interesting possibilities for nonlinear triggers for large climate changes. Significance Statement How do carbon cycle and other physical processes affect the physical and mathematical properties of the climate system? We use a complex climate model coupled with a carbon cycle to simulate the climate evolution under different initial conditions. Four stable climate states are possible, from the Snowball Earth, in which ice covers the whole planet, to the Warm state, an ice-free world. The carbon cycle drives the global climate change at an extremely slower pace after sea ice retreats. Sea ice and water vapor, on the other hand, constitute the major contributing factors that accelerate faster climate change.more » « less
-
null (Ed.)Abstract Turbulent mixing in the planetary boundary layer (PBL) governs the vertical exchange of heat, moisture, momentum, trace gases, and aerosols in the surface–atmosphere interface. The PBL height (PBLH) represents the maximum height of the free atmosphere that is directly influenced by Earth’s surface. This study uses a multidata synthesis approach from an ensemble of multiple global datasets of radiosonde observations, reanalysis products, and climate model simulations to examine the spatial patterns of long-term PBLH trends over land between 60°S and 60°N for the period 1979–2019. By considering both the sign and statistical significance of trends, we identify large-scale regions where the change signal is robust and consistent to increase our confidence in the obtained results. Despite differences in the magnitude and sign of PBLH trends over many areas, all datasets reveal a consensus on increasing PBLH over the enormous and very dry Sahara Desert and Arabian Peninsula (SDAP) and declining PBLH in India. At the global scale, the changes in PBLH are significantly correlated positively with the changes in surface heating and negatively with the changes in surface moisture, consistent with theory and previous findings in the literature. The rising PBLH is in good agreement with increasing sensible heat and surface temperature and decreasing relative humidity over the SDAP associated with desert amplification, while the declining PBLH resonates well with increasing relative humidity and latent heat and decreasing sensible heat and surface warming in India. The PBLH changes agree with radiosonde soundings over the SDAP but cannot be validated over India due to lack of good-quality radiosonde observations.more » « less
An official website of the United States government
