- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
00030
- Availability
-
12
- Author / Contributor
- Filter by Author / Creator
-
-
Saveliev, Nikolai (2)
-
Capoferri, Matteo (1)
-
Daemi, Aliakbar (1)
-
Rozenblum, Grigori (1)
-
Ruberman, Daniel (1)
-
Scaduto, Christopher (1)
-
Vassiliev, Dmitri (1)
-
#Tyler Phillips, Kenneth E. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
2022 USENIX Annual Technical Conference (0)
-
2023 4th International Conference on Big Data Analytics and Practices (IBDAP), 2023 (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Kronheimer and Mrowka asked whether the difference between the four-dimensional clasp number and the slice genus can be arbitrarily large. This question is answered affirmatively by studying a knot invariant derived from equivariant singular instanton theory, and which is closely related to the Chern-Simons functional. This also answers a conjecture of Livingston about slicing numbers. Also studied is the singular instanton Frøyshov invariant of a knot. If defined with integer coefficients, this gives a lower bound for the unoriented slice genus, and is computed for quasi-alternating and torus knots. In contrast, for certain other coefficient rings, the invariant is identified with a multiple of the knot signature. This result is used to address a conjecture by Poudel and Saveliev about traceless SU(2) representations of torus knots. Further, for a concordance between knots with non-zero signature, it is shown that there is a traceless representation of the concordance complement which restricts to non-trivial representations of the knot groups. Finally, some evidence towards an extension of the slice-ribbon conjecture to torus knots is provided.more » « lessFree, publicly-accessible full text available April 1, 2024
-
Capoferri, Matteo ; Rozenblum, Grigori ; Saveliev, Nikolai ; Vassiliev, Dmitri ( , Proceedings of the American Mathematical Society, Series B)Given a matrix pseudodifferential operator on a smooth manifold, one may be interested in diagonalising it by choosing eigenvectors of its principal symbol in a smooth manner. We show that diagonalisation is not always possible, on the whole cotangent bundle or even in a single fibre. We identify global and local topological obstructions to diagonalisation and examine physically meaningful examples demonstrating that all possible scenarios can occur.more » « lessFree, publicly-accessible full text available December 27, 2023
-
Ruberman, Daniel ; Saveliev, Nikolai ( , Open Book Series)