- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
40
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Seibold, Benjamin (3)
-
Cheng, Chungho (2)
-
Finkelstein, Joshua (2)
-
Fiorin, Giacomo (2)
-
Grønbech-Jensen, Niels (2)
-
Ramadan, R. A. (1)
-
Rosales, R. R. (1)
-
Rosales, Rodolfo Ruben (1)
-
Seibold, B. (1)
-
Shirokoff, David (1)
-
Zhou, Dong (1)
-
#Tyler Phillips, Kenneth E. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Ahmed, Khadija. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Higgins, A. (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
:Chaosong Huang, Gang Lu (0)
-
A. Agarwal (0)
-
A. Beygelzimer (0)
-
A. E. Lischka (0)
-
A. E. Lischka, E. B. (0)
-
A. E. Lischka, E.B. Dyer (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Rosales, Rodolfo Ruben ; Seibold, Benjamin ; Shirokoff, David ; Zhou, Dong ( , Computer Methods in Applied Mechanics and Engineering)
-
Ramadan, R. A. ; Rosales, R. R. ; Seibold, B. ( , Mathematical Descriptions of Traffic Flow: Micro, Macro and Kinetic Models. SEMA SIMAI Springer Series)It is known that inhomogeneous second-order macroscopic traffic models can reproduce the phantom traffic jam phenomenon: whenever the sub-characteristic condition is violated, uniform traffic flow is unstable, and small perturbations grow into nonlinear traveling waves, called jamitons. In contrast, what is essentially unstudied is the question: which jamiton solutions are dynamically stable? To understand which stop-and-go traffic waves can arise through the dynamics of the model, this question is critical. This paper first presents a computational study demonstrating which types of jamitons do arise dynamically, and which do not. Then, a procedure is presented that characterizes the stability of jamitons. The study reveals that a critical component of this analysis is the proper treatment of the perturbations to the shocks, and of the neighborhood of the sonic points.
-
Finkelstein, Joshua ; Cheng, Chungho ; Fiorin, Giacomo ; Seibold, Benjamin ; Grønbech-Jensen, Niels ( , The Journal of Chemical Physics)