skip to main content

Search for: All records

Award ID contains: 1952878

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. It is known that inhomogeneous second-order macroscopic traffic models can reproduce the phantom traffic jam phenomenon: whenever the sub-characteristic condition is violated, uniform traffic flow is unstable, and small perturbations grow into nonlinear traveling waves, called jamitons. In contrast, what is essentially unstudied is the question: which jamiton solutions are dynamically stable? To understand which stop-and-go traffic waves can arise through the dynamics of the model, this question is critical. This paper first presents a computational study demonstrating which types of jamitons do arise dynamically, and which do not. Then, a procedure is presented that characterizes the stability of jamitons. The study reveals that a critical component of this analysis is the proper treatment of the perturbations to the shocks, and of the neighborhood of the sonic points.