skip to main content


Search for: All records

Award ID contains: 1953393

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Current methods used to quantify brain size and compartmental scaling relationships in studies of social insect brain evolution involve manual annotations of images from histological samples, confocal microscopy or other sources. This process is susceptible to human bias and error and requires time-consuming effort by expert annotators. Standardized brain atlases, constructed through 3D registration and automatic segmentation, surmount these issues while increasing throughput to robustly sample diverse morphological and behavioral phenotypes. Here we design and evaluate three strategies to construct statistical brain atlases, or templates, using ants as a model taxon. The first technique creates a template by registering multiple brains of the same species. Brain regions are manually annotated on the template, and the labels are transformed back to each individual brain to obtain an automatic annotation, or to any other brain aligned with the template. The second strategy also creates a template from multiple brain images but obtains labels as a consensus from multiple manual annotations of individual brains comprising the template. The third technique is based on a template comprising brains from multiple species and the consensus of their labels. We used volume similarity as a metric to evaluate the automatic segmentation produced by each method against the inter- and intra-individual variability of human expert annotators. We found that automatic and manual methods are equivalent in volume accuracy, making the template technique an extraordinary tool to accelerate data collection and reduce human bias in the study of the evolutionary neurobiology of ants and other insects. 
    more » « less
  2. Human brain size nearly quadrupled in the six million years since Homo last shared a common ancestor with chimpanzees, but human brains are thought to have decreased in volume since the end of the last Ice Age. The timing and reason for this decrease is enigmatic. Here we use change-point analysis to estimate the timing of changes in the rate of hominin brain evolution. We find that hominin brains experienced positive rate changes at 2.1 and 1.5 million years ago, coincident with the early evolution of Homo and technological innovations evident in the archeological record. But we also find that human brain size reduction was surprisingly recent, occurring in the last 3,000 years. Our dating does not support hypotheses concerning brain size reduction as a by-product of body size reduction, a result of a shift to an agricultural diet, or a consequence of self-domestication. We suggest our analysis supports the hypothesis that the recent decrease in brain size may instead result from the externalization of knowledge and advantages of group-level decision-making due in part to the advent of social systems of distributed cognition and the storage and sharing of information. Humans live in social groups in which multiple brains contribute to the emergence of collective intelligence. Although difficult to study in the deep history of Homo , the impacts of group size, social organization, collective intelligence and other potential selective forces on brain evolution can be elucidated using ants as models. The remarkable ecological diversity of ants and their species richness encompasses forms convergent in aspects of human sociality, including large group size, agrarian life histories, division of labor, and collective cognition. Ants provide a wide range of social systems to generate and test hypotheses concerning brain size enlargement or reduction and aid in interpreting patterns of brain evolution identified in humans. Although humans and ants represent very different routes in social and cognitive evolution, the insights ants offer can broadly inform us of the selective forces that influence brain size. 
    more » « less
  3. null (Ed.)