skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1954348

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Proton transfer and hydrogen tunneling play key roles in many processes of chemical and biological importance. The generalized nuclear-electronic orbital multistate density functional theory (NEO-MSDFT) method was developed in order to capture hydrogen tunneling effects in systems involving the transfer and tunneling of one or more protons. The generalized NEO-MSDFT method treats the transferring protons quantum mechanically on the same level as the electrons and obtains the delocalized vibronic states associated with hydrogen tunneling by mixing localized NEO-DFT states in a nonorthogonal configuration interaction scheme. Herein, we present the derivation and implementation of analytical gradients for the generalized NEO-MSDFT vibronic state energies and the nonadiabatic coupling vectors between these vibronic states. We use this methodology to perform adiabatic and nonadiabatic dynamics simulations of the double proton transfer reactions in the formic acid dimer and the heterodimer of formamidine and formic acid. The generalized NEO-MSDFT method is shown to capture the strongly coupled synchronous or asynchronous tunneling of the two protons in these processes. Inclusion of vibronically nonadiabatic effects is found to significantly impact the double proton transfer dynamics. This work lays the foundation for a variety of nonadiabatic dynamics simulations of multiple proton transfer systems, such as proton relays and hydrogen-bonding networks. 
    more » « less
  2. In the recently discovered proton-coupled energy transfer (PCEnT) mechanism, the transfer of electronic excitation energy between donor and acceptor chromophores is coupled to a proton transfer reaction. Herein, we develop a general theory for PCEnT and derive an analytical expression for the nonadiabatic PCEnT rate constant. This theory treats the transferring hydrogen nucleus quantum mechanically and describes the PCEnT process in terms of nonadiabatic transitions between reactant and product electron–proton vibronic states. The rate constant is expressed as a summation over these vibronic states, and the contribution of each pair of vibronic states depends on the square of the vibronic coupling as well as the spectral convolution integral, which can be viewed as a generalization of the Förster-type spectral overlap integral for vibronic rather than electronic states. The convolution integral also accounts for the common vibrational modes shared by the donor and acceptor chromophores for intramolecular PCEnT. We apply this theory to model systems to investigate the key features of PCEnT processes. The excited vibronic states can contribute significantly to the total PCEnT rate constant, and the common modes can either slow down or speed up the process. Because the pairs of vibronic states that contribute the most to the PCEnT rate constant may correspond to spectroscopically dark states, PCEnT could occur even when there is no apparent overlap between the donor emission and acceptor absorption spectra. This theory will assist in the interpretation of experimental data and will guide the design of additional PCEnT systems. 
    more » « less
  3. Within the nuclear-electronic orbital (NEO) framework, the real-time NEO time-dependent density functional theory (RT-NEO-TDDFT) approach enables the simulation of coupled electronic-nuclear dynamics. In this approach, the electrons and quantum nuclei are propagated in time on the same footing. A relatively small time step is required to propagate the much faster electronic dynamics, thereby prohibiting the simulation of long-time nuclear quantum dynamics. Herein, the electronic Born–Oppenheimer (BO) approximation within the NEO framework is presented. In this approach, the electronic density is quenched to the ground state at each time step, and the real-time nuclear quantum dynamics is propagated on an instantaneous electronic ground state defined by both the classical nuclear geometry and the nonequilibrium quantum nuclear density. Because the electronic dynamics is no longer propagated, this approximation enables the use of an order-of-magnitude larger time step, thus greatly reducing the computational cost. Moreover, invoking the electronic BO approximation also fixes the unphysical asymmetric Rabi splitting observed in previous semiclassical RT-NEO-TDDFT simulations of vibrational polaritons even for small Rabi splitting, instead yielding a stable, symmetric Rabi splitting. For the intramolecular proton transfer in malonaldehyde, both RT-NEO-Ehrenfest dynamics and its BO counterpart can describe proton delocalization during the real-time nuclear quantum dynamics. Thus, the BO RT-NEO approach provides the foundation for a wide range of chemical and biological applications. 
    more » « less
  4. The accurate description of nuclear quantum effects, such as zero-point energy, is important for modeling a wide range of chemical and biological processes. Within the nuclear–electronic orbital (NEO) approach, such effects are incorporated in a computationally efficient way by treating electrons and select nuclei, typically protons, quantum mechanically with molecular orbital techniques. Herein, we implement and test a NEO coupled cluster method that explicitly includes the triple electron–electron–proton excitations, where two electrons and one proton are excited simultaneously, using automatic differentiation. Our calculations show that this NEO-CCSDT eep method provides highly accurate proton densities and proton affinities, outperforming any previously studied NEO method. These examples highlight the importance of the triple electron–electron–proton excitations for an accurate description of nuclear quantum effects. Additionally, we also implement and test the second-order approximate coupled cluster with singles and doubles (NEO-CC2) method as well as its scaled-opposite-spin (SOS) versions. The NEO-SOS′-CC2 method, which scales the electron–proton correlation energy as well as the opposite-spin and same-spin components of the electron–electron correlation energy, achieves nearly the same accuracy as the NEO-CCSDT eep method for the properties studied. Because of its low computational cost, this method will enable a wide range of chemical and photochemical applications for large molecular systems. This work sets the stage for a variety of developments and applications within the NEO framework. 
    more » « less