skip to main content


Search for: All records

Award ID contains: 1954372

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. New modes of technology are offering unprecedented opportunities to unobtrusively collect data about people's behavior. While there are many use cases for such information, we explore its utility for predicting multiple clinical assessment scores. Because clinical assessments are typically used as screening tools for impairment and disease, such as mild cognitive impairment (MCI), automatically mapping behavioral data to assessment scores can help detect changes in health and behavior across time. In this article, we aim to extract behavior markers from two modalities, a smart home environment and a custom digital memory notebook app, for mapping to 10 clinical assessments that are relevant for monitoring MCI onset and changes in cognitive health. Smart-home-based behavior markers reflect hourly, daily, and weekly activity patterns, while app-based behavior markers reflect app usage and writing content/style derived from free-form journal entries. We describe machine learning techniques for fusing these multimodal behavior markers and utilizing joint prediction. We evaluate our approach using three regression algorithms and data from 14 participants with MCI living in a smart-home environment. We observed moderate to large correlations between predicted and ground-truth assessment scores, ranging from r = 0.601 to r = 0.871 for each clinical assessment. 
    more » « less
  2. Abstract Background Behavior and health are inextricably linked. As a result, continuous wearable sensor data offer the potential to predict clinical measures. However, interruptions in the data collection occur, which create a need for strategic data imputation. Objective The objective of this work is to adapt a data generation algorithm to impute multivariate time series data. This will allow us to create digital behavior markers that can predict clinical health measures. Methods We created a bidirectional time series generative adversarial network to impute missing sensor readings. Values are imputed based on relationships between multiple fields and multiple points in time, for single time points or larger time gaps. From the complete data, digital behavior markers are extracted and are mapped to predicted clinical measures. Results We validate our approach using continuous smartwatch data for n = 14 participants. When reconstructing omitted data, we observe an average normalized mean absolute error of 0.0197. We then create machine learning models to predict clinical measures from the reconstructed, complete data with correlations ranging from r = 0.1230 to r = 0.7623. This work indicates that wearable sensor data collected in the wild can be used to offer insights on a person's health in natural settings. 
    more » « less
  3. In this study, we introduce and validate a computational method to detect lifestyle change that occurs in response to a multi-domain healthy brain aging intervention. To detect behavior change, digital behavior markers are extracted from smartwatch sensor data and a permutation-based change detection algorithm quantifies the change in marker-based behavior from a pre-intervention, 1-week baseline. To validate the method, we verify that changes are successfully detected from synthetic data with known pattern differences. Next, we employ this method to detect overall behavior change for n = 28 brain health intervention subjects and n = 17 age-matched control subjects. For these individuals, we observe a monotonic increase in behavior change from the baseline week with a slope of 0.7460 for the intervention group and a slope of 0.0230 for the control group. Finally, we utilize a random forest algorithm to perform leave-one-subject-out prediction of intervention versus control subjects based on digital marker delta values. The random forest predicts whether the subject is in the intervention or control group with an accuracy of 0.87. This work has implications for capturing objective, continuous data to inform our understanding of intervention adoption and impact. 
    more » « less
  4. Physical activity is a cornerstone of chronic conditions and one of the most critical factors in reducing the risks of cardiovascular diseases, the leading cause of death in the United States. App-based lifestyle interventions have been utilized to promote physical activity in people with or at risk for chronic conditions. However, these mHealth tools have remained largely static and do not adapt to the changing behavior of the user. In a step toward designing adaptive interventions, we propose BeWell24Plus, a framework for monitoring activity and user engagement and developing computational models for outcome prediction and intervention design. In particular, we focus on devising algorithms that combine data about physical activity and engagement with the app to predict future physical activity performance. Knowing in advance how active a person is going to be in the next day can help with designing adaptive interventions that help individuals achieve their physical activity goals. Our technique combines the recent history of a person's physical activity with app engagement metrics such as when, how often, and for how long the app was used to forecast the near future's activity. We formulate the problem of multimodal activity forecasting and propose an LSTM-based realization of our proposed model architecture, which estimates physical activity outcomes in advance by examining the history of app usage and physical activity of the user. We demonstrate the effectiveness of our forecasting approach using data collected with 58 prediabetic people in a 9-month user study. We show that our multimodal forecasting approach outperforms single-modality forecasting by 2.2$ to 11.1% in mean-absolute-error. 
    more » « less