- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Dunne, Cody (2)
-
Miklau, Gerome (2)
-
Panavas, Liudas (2)
-
Sarvghad, Ali (2)
-
Adams, Jane Lydia (1)
-
Bartolomeo, Sara Di (1)
-
Crnovrsanin, Tarik (1)
-
Mahyar, Narges (1)
-
McKenna, Ryan (1)
-
Mullins, Brett (1)
-
Sargavad, Ali (1)
-
Sarker, Amit (1)
-
Sheldon, Daniel (1)
-
Tory, Melanie (1)
-
Ullman, Jonathan (1)
-
Zhang, Dan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Panavas, Liudas; Crnovrsanin, Tarik; Adams, Jane Lydia; Ullman, Jonathan; Sargavad, Ali; Tory, Melanie; Dunne, Cody (, IEEE Transactions on Visualization and Computer Graphics)
-
McKenna, Ryan; Mullins, Brett; Sheldon, Daniel; Miklau, Gerome (, Proceedings of the VLDB Endowment)We propose AIM, a new algorithm for differentially private synthetic data generation. AIM is a workload-adaptive algorithm within the paradigm of algorithms that first selects a set of queries, then privately measures those queries, and finally generates synthetic data from the noisy measurements. It uses a set of innovative features to iteratively select the most useful measurements, reflecting both their relevance to the workload and their value in approximating the input data. We also provide analytic expressions to bound per-query error with high probability which can be used to construct confidence intervals and inform users about the accuracy of generated data. We show empirically that AIM consistently outperforms a wide variety of existing mechanisms across a variety of experimental settings.more » « less
-
Zhang, Dan; Sarvghad, Ali; Miklau, Gerome (, IEEE transactions on visualization and computer graphics)null (Ed.)
An official website of the United States government

Full Text Available