- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Carthy, Camille L. (1)
-
Dunscomb, Rachel J. (1)
-
Fischer, Paul J. (1)
-
Nataro, Chip (1)
-
Roe, Charley B. (1)
-
Stephenson, Jasmine N. (1)
-
Young, Victor G. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The importance of electron deficient Tp ligands motivates the introduction of electron-withdrawing substituents into the scorpionate framework. Since perfluorophenyltris(pyrazol-1-yl)borate affects significant anodic shifts in half-cell potentials in their metal complexes relative those of phenyltris(pyrazol-1-yl)borate analogues, the tuning opportunities achieved using 3,4,5-trifluorophenyl- and 3,5-bis(trifluoromethyl)phenyl(pyrazol-1-yl)borates were explored. Bis(amino)boranes ((3,4,5-F)C 6 H 2 )B(NMe 2 ) 2 and ((3,5-CF 3 )C 6 H 3 )B(NMe 2 ) 2 are precursors to fluorinated tris(pyrazol-1-yl)phenylborates. Thallium salts of these scorpionates exhibit bridging asymmetric κ 3 - N , N , N coordination modes consistent with the reduced π-basicity of the fluorinated phenyl substituents relative those of other structurally characterized tris(pyrazol-1-yl)phenylborates. While a comparative analysis of the spectral and X-ray crystallographic data for classical Mo(0), Mo( ii ), Mn( i ), Fe( ii ) and Cu( ii ) complexes of [((3,4,5-F)C 6 H 2 )Bpz 3 ] − and [((3,5-CF 3 )C 6 H 3 )Bpz 3 ] − could not differentiate these ligands with respect to their metal-based electronic impacts, cyclic voltammetry suggests that 3,4,5-trifluorophenyl- and 3,5-bis(trifluoromethyl)phenyl(pyrazol-1-yl)borates affect similar anodic shifts within their metal complexes, with coordination of [((3,5-CF 3 )C 6 H 3 )Bpz 3 ] − rendering metal centers more difficult to oxidize, and sometimes even more difficult to oxidize than their [C 6 F 5 Bpz 3 ] − analogues. These data suggest that the extent of phenyl substituent fluorination necessary to minimize metal center electron-richness in phenyltris(pyrazol-1-yl)borate complexes cannot be confidently predicted.more » « less
An official website of the United States government
