Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The large available bandwidth at sub-terahertz and terahertz frequencies has the potential to enable very high data rates for wireless communications. Moreover, given the large electrical size of terahertz antenna apertures, many future terahertz communication systems will likely operate in the near field. However, due to their reliance on highly directional beams, terahertz systems are susceptible to blockage. Here, we propose using Bessel beams to overcome issues caused by blockage due to their diffraction-free nature and self-healing properties in the near field. We compare the performance of information-bearing Bessel beams and Gaussian beams with and without an obstacle. We later discuss the use of reconfigurable intelligent surfaces to construct terahertz Bessel beams. Finally, we propose a metric to quantify the quality of imperfectly generated terahertz Bessel beams and explore their ability to self-heal. The results demonstrate that Bessel beams are an attractive option for near-field terahertz communications, especially when mitigating the effects of partial blockage.more » « less
-
Abstract The field of sub-terahertz wireless communications is advancing rapidly, with major research efforts ramping up around the globe. To address some of the significant hurdles associated with exploiting these high frequencies for broadband and secure networking, systems will require extensive new capabilities for sensing their environment and manipulating their broadcasts. Based on these requirements, a vision for future wireless systems is beginning to emerge. In this Perspective article, we discuss some of the prominent challenges and possible solutions which are at the forefront of current research, and which will contribute to the architecture of wireless platforms beyond 5G.more » « less
-
Abstract One of the key distinctions between legacy low-frequency wireless systems and future THz wireless transmissions is that THz links will require high directionality, to overcome the large free-space path loss. Because of this directionality, optical phenomena become increasingly important as design considerations. A key example lies in the strong dependence of angular radiation patterns on the transmission frequency, which is manifested in many different situations including common diffraction patterns and the emission from leaky-wave apertures. As a result of this effect, the spectral bandwidth at a receiver is nonlinearly dependent on the receiver’s angular position and distance from the transmitter. In this work, we explore the implications of this type of effect by incorporating either a diffraction grating or a leaky wave antenna into a communication link. These general considerations will have significant implications for the robustness of data transmissions at high frequencies.more » « less