skip to main content


Search for: All records

Award ID contains: 1955394

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Programmers often rely on online resources—such as code exam- ples, documentation, blogs, and Q&A forums—to compare similar libraries and select the one most suitable for their own tasks and contexts. However, this comparison task is often done in an ad-hoc manner, which may result in suboptimal choices. Inspired by Ana- logical Learning and Variation Theory, we hypothesize that render- ing many concept-annotated code examples from different libraries side-by-side can help programmers (1) develop a more comprehen- sive understanding of the libraries’ similarities and distinctions and (2) make more robust, appropriate library selections. We designed a novel interactive interface, ParaLib, and used it as a technical probe to explore to what extent many side-by-side concepted-annotated examples can facilitate the library comparison and selection pro- cess. A within-subjects user study with 20 programmers shows that, when using ParaLib, participants made more consistent, suitable library selections and provided more comprehensive summaries of libraries’ similarities and differences. 
    more » « less
  2. Training deep neural networks can generate non-descriptive error messages or produce unusual output without any explicit errors at all. While experts rely on tacit knowledge to apply debugging strategies, non-experts lack the experience required to interpret model output and correct Deep Learning (DL) programs. In this work, we identify DL debugging heuristics and strategies used by experts, andIn this work, we categorize the types of errors novices run into when writing ML code, and map them onto opportunities where tools could help. We use them to guide the design of Umlaut. Umlaut checks DL program structure and model behavior against these heuristics; provides human-readable error messages to users; and annotates erroneous model output to facilitate error correction. Umlaut links code, model output, and tutorial-driven error messages in a single interface. We evaluated Umlaut in a study with 15 participants to determine its effectiveness in helping developers find and fix errors in their DL programs. Participants using Umlaut found and fixed significantly more bugs and were able to implement fixes for more bugs compared to a baseline condition. 
    more » « less