skip to main content

Search for: All records

Award ID contains: 1955474

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Although scanning transmission electron microscopy (STEM) images of individual heavy atoms were reported 50 years ago, the applications of atomic-resolution STEM imaging became wide spread only after the practical realization of aberration correctors on field-emission STEM/TEM instruments to form sub-Ångstrom electron probes. The innovative designs and advances of electron optical systems, the fundamental understanding of electron–specimen interaction processes, and the advances in detector technology all played a major role in achieving the goal of atomic-resolution STEM imaging of practical materials. It is clear that tremendous advances in computer technology and electronics, image acquisition and processing algorithms, image simulations, and precisionmore »machining synergistically made atomic-resolution STEM imaging routinely accessible. It is anticipated that further hardware/software development is needed to achieve three-dimensional atomic-resolution STEM imaging with single-atom chemical sensitivity, even for electron-beam-sensitive materials. Artificial intelligence, machine learning, and big-data science are expected to significantly enhance the impact of STEM and associated techniques on many research fields such as materials science and engineering, quantum and nanoscale science, physics and chemistry, and biology and medicine. This review focuses on advances of STEM imaging from the invention of the field-emission electron gun to the realization of aberration-corrected and monochromated atomic-resolution STEM and its broad applications.« less
    Free, publicly-accessible full text available August 20, 2022
  2. Single-atom catalysts (SACs) exhibit unique catalytic property and maximum atom efficiency of rare, expensive metals. A critical barrier to applications of SACs is sintering of active metal atoms under operating conditions. Anchoring metal atoms onto oxide supports via strong metal-support bonds may alleviate sintering. Such an approach, however, usually comes at a cost: stabilization results from passivation of metal sites by excessive oxygen ligation—too many open coordination sites taken up by the support, too few left for catalytic action. Furthermore, when such stabilized metal atoms are activated by reduction at elevated temperatures they become unlinked and so move and sinter,more »leading to loss of catalytic function. We report a new strategy, confining atomically dispersed metal atoms onto functional oxide nanoclusters (denoted as nanoglues) that are isolated and immobilized on a robust, high-surface-area support—so that metal atoms do not sinter under conditions of catalyst activation and/or operation. High-number-density, ultra-small and defective CeOx nanoclusters were grafted onto high-surface-area SiO2 as nanoglues to host atomically dispersed Pt. The Pt atoms remained on the CeOx nanoglue islands under both O2 and H2 environment at high temperatures. Activation of CeOx supported Pt atoms increased the turnover frequency for CO oxidation by 150 times. The exceptional stability under reductive conditions is attributed to the much stronger affinity of Pt atoms for CeOx than for SiO2—the Pt atoms can move but they are confined to their respective nanoglue islands, preventing formation of larger Pt particles. The strategy of using functional nanoglues to confine atomically dispersed metal atoms and simultaneously enhance catalytic performance of localized metal atoms is general and takes SACs one major step closer to practical applications as robust catalysts for a wide range of catalytic transformations.« less
  3. Single-atom catalysts (SACs) exhibit excellent performance for various catalytic reactions but it is still challenging to have adequate total activity for practical applications. Here we report the high-valence, square planar Pt 1 –O 4 as an active site that enables significantly to increase the total activity of the Pt 1 /Fe 2 O 3 SAC with a Pt loading of only ∼30 ppm, which is similar to that of a 1.0 wt% nano-Pt/Fe 2 O 3 , for CO oxidation at 350 °C. Density functional theory calculations reveal that Pt 1 –O 4 catalyzes CO oxidation through a non-classical Mars–vanmore »Krevelen mechanism. The adsorbed O 2 on Pt 1 atoms activates the coordination oxygen in the Pt 1 –O 4 configuration, and then a barrierless O 2 dissociation occurs on the Pt 1 –Fe 2 triangle to replenish the consumed coordination oxygen by the cooperative action of Pt 5d and Fe 3d electrons. This work provides a new fundamental understanding of oxidation catalysis on stable and active SACs, providing guidance for rationally designing future heterogeneous catalysts.« less