Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Although scanning transmission electron microscopy (STEM) images of individual heavy atoms were reported 50 years ago, the applications of atomic-resolution STEM imaging became wide spread only after the practical realization of aberration correctors on field-emission STEM/TEM instruments to form sub-Ångstrom electron probes. The innovative designs and advances of electron optical systems, the fundamental understanding of electron–specimen interaction processes, and the advances in detector technology all played a major role in achieving the goal of atomic-resolution STEM imaging of practical materials. It is clear that tremendous advances in computer technology and electronics, image acquisition and processing algorithms, image simulations, and precisionmore »Free, publicly-accessible full text available August 20, 2022
-
Single-atom catalysts (SACs) exhibit unique catalytic property and maximum atom efficiency of rare, expensive metals. A critical barrier to applications of SACs is sintering of active metal atoms under operating conditions. Anchoring metal atoms onto oxide supports via strong metal-support bonds may alleviate sintering. Such an approach, however, usually comes at a cost: stabilization results from passivation of metal sites by excessive oxygen ligation—too many open coordination sites taken up by the support, too few left for catalytic action. Furthermore, when such stabilized metal atoms are activated by reduction at elevated temperatures they become unlinked and so move and sinter,more »
-
Single-atom catalysts (SACs) exhibit excellent performance for various catalytic reactions but it is still challenging to have adequate total activity for practical applications. Here we report the high-valence, square planar Pt 1 –O 4 as an active site that enables significantly to increase the total activity of the Pt 1 /Fe 2 O 3 SAC with a Pt loading of only ∼30 ppm, which is similar to that of a 1.0 wt% nano-Pt/Fe 2 O 3 , for CO oxidation at 350 °C. Density functional theory calculations reveal that Pt 1 –O 4 catalyzes CO oxidation through a non-classical Mars–vanmore »