skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1955565

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Random data generators can be thought of as parsers of streams of randomness. This perspective on generators for random data structures is established folklore in the programming languages community, but it has never been formalized, nor have its consequences been deeply explored. We build on the idea of freer monads to develop free generators, which unify parsing and generation using a common structure that makes the relationship between the two concepts precise. Free generators lead naturally to a proof that a monadic generator can be factored into a parser plus a distribution over choice sequences. Free generators also support a notion of derivative, analogous to the familiar Brzozowski derivatives of formal languages, allowing analysis tools to preview the effect of a particular generator choice. This gives rise to a novel algorithm for generating data structures satisfying user-specified preconditions. 
    more » « less
  2. We present a principled automatic testing framework for application-layer protocols. The key innovation is a domain-specific embedded language for writing nondeterministic models of the behavior of networked servers. These models are defined within the Coq interactive theorem prover, supporting a smooth transition from testing to formal verification. Given a server model, we show how to automatically derive a tester that probes the server for unexpected behaviors. We address the uncertainties caused by both the server's internal choices and the network delaying messages nondeterministically. The derived tester accepts server implementations whose possible behaviors are a subset of those allowed by the nondeterministic model. We demonstrate the effectiveness of this framework by using it to specify and test a fragment of the HTTP protocol, showing that the automatically derived tester can capture RFC violations in buggy server implementations, including the latest versions of Apache and Nginx. 
    more » « less