Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Existing work on tabular representation-learning jointly models tables and associated text using self-supervised objective functions derived from pretrained language models such as BERT. While this joint pretraining improves tasks involving paired tables and text (e.g., answering questions about tables), we show that it underperforms on tasks that operate over tables without any associated text (e.g., populating missing cells). We devise a simple pretraining objective (corrupt cell detection) that learns exclusively from tabular data and reaches the state-of-the-art on a suite of table-based prediction tasks. Unlike competing approaches, our model (TABBIE) provides embeddings of all table substructures (cells, rows, and columns), and it also requires far less compute to train. A qualitative analysis of our model’s learned cell, column, and row representations shows that it understands complex table semantics and numerical trends.more » « less
-
null (Ed.)Recent progress in language modeling has been driven not only by advances in neural architectures, but also through hardware and optimization improvements. In this paper, we revisit the neural probabilistic language model (NPLM) of Bengio et al. (2003), which simply concatenates word embeddings within a fixed window and passes the result through a feed-forward network to predict the next word. When scaled up to modern hardware, this model (despite its many limitations) performs much better than expected on word-level language model benchmarks. Our analysis reveals that the NPLM achieves lower perplexity than a baseline Transformer with short input contexts but struggles to handle long-term dependencies. Inspired by this result, we modify the Transformer by replacing its first self-attention layer with the NPLM’s local concatenation layer, which results in small but consistent perplexity decreases across three word-level language modeling datasets.more » « less
-
null (Ed.)The task of long-form question answering (LFQA) involves retrieving documents relevant to a given question and using them to generate a paragraph-length answer. While many models have recently been proposed for LFQA, we show in this paper that the task formulation raises fundamental challenges regarding evaluation and dataset creation that currently preclude meaningful modeling progress. To demonstrate these challenges, we first design a new system that relies on sparse attention and contrastive retriever learning to achieve state-of-the-art performance on the ELI5 LFQA dataset. While our system tops the public leaderboard, a detailed analysis reveals several troubling trends: (1) our system’s generated answers are not actually grounded in the documents that it retrieves; (2) ELI5 contains significant train / validation overlap, as at least 81% of ELI5 validation questions occur in paraphrased form in the training set; (3) ROUGE-L is not an informative metric of generated answer quality and can be easily gamed; and (4) human evaluations used for other text generation tasks are unreliable for LFQA. We offer suggestions to mitigate each of these issues, which we hope will lead to more rigorous LFQA research and meaningful progress in the future.more » « less
-
null (Ed.)The deep inside-outside recursive autoencoder (DIORA; Drozdov et al. 2019) is a self-supervised neural model that learns to induce syntactic tree structures for input sentences *without access to labeled training data*. In this paper, we discover that while DIORA exhaustively encodes all possible binary trees of a sentence with a soft dynamic program, its vector averaging approach is locally greedy and cannot recover from errors when computing the highest scoring parse tree in bottom-up chart parsing. To fix this issue, we introduce S-DIORA, an improved variant of DIORA that encodes a single tree rather than a softly-weighted mixture of trees by employing a hard argmax operation and a beam at each cell in the chart. Our experiments show that through *fine-tuning* a pre-trained DIORA with our new algorithm, we improve the state of the art in *unsupervised* constituency parsing on the English WSJ Penn Treebank by 2.2-6% F1, depending on the data used for fine-tuning.more » « less
An official website of the United States government
